Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

General Description

The MAX2550 is a complete single-chip RF-to-bits and bits-to-RF radio transceiver. This device is in compliance with the 3GPP TS25.104 femtocell standard for Band I, V, and VIII. It is equipped with multiple receive inputs and transmit outputs for low band, high band, and macro-cell monitoring (Table 1).

This fully integrated transceiver facilitates compact radio designs for dongle and standalone femtocell products by minimizing external component count. Maxim's MAX-PHY serial interface is used to drastically reduce IC pin count, while worldwide field-proven architecture accelerates time to product deployment.
The device features unparalleled receive blocker performance and the industry's lowest noise figure for higher data rates and range. Low-power operational modes are available to minimize power consumption. The transmitter is designed to deliver EVM far exceeding the standard requirement at 0 dBm .
The MAX2550-MAX2553 is a family of pin-compatible transceivers that cover all major WCDMA and cdma2000® bands. All parts are controlled by a 4-wire interface.
The MAX2550 is packaged in a compact $7 \mathrm{~mm} \times 7 \mathrm{~mm}$ TQFN and specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range. A complete radio reference design is available to facilitate custom designs.

Applications

WCDMA Band I, V, and VIII Femtocells

Ordering Information and Simplified Block Diagram appear at end of data sheet.

For related parts and recommended products to use with this part, refer to www.maxim-ic.com/MAX2550.related.

Benefits and Features

- Single-Chip Femtocell Radio Transceiver
- WCDMA/HSPA+ Band I, V, and VIII Operation
- TS25.104 Standard Compliant
- Multiple LNA Inputs for WCDMA, PCS, and GSM Macrocell Monitoring
- High Level of Integration
\diamond On-Chip Fractional-N Frequency Synthesizers for LO Generation
\diamond No Tx SAW Filters Required
\diamond Integrated PA Drivers for Lower-Cost Power Amplifier Designs
$\diamond 12$-Bit AFC DAC to Control TCXO
\diamond On-Chip Temperature Sensor
\diamond Three General-Purpose Outputs
\diamond Reference Clock with Selectable CMOS and Low Swing Output
\diamond PLL Lock-Detect Output Through GPO3
- Optimized Receiver Performance
\diamond Exceptional Receive Sensitivity
\diamond High Dynamic Range Sigma-Delta ADCs Allow Simple AGC Implementation with Switched Gain States
- Optimized Transmitter Performance
\diamond Factory Calibrated for Gain, Carrier Leakage, and Sideband Suppression
\diamond 10-Bit Gain Control Resolution for Better Power Accuracy
\diamond 60dB Gain Control Range
- Loopback Operating Mode from Tx Baseband Input to Rx Baseband Output
- MAX-PHY Serial Digital Interface
- SPI Read/Write Functionality
- Operation Controlled by 4-Wire Serial Interface
- Low-Cost, 7mm x 7mm TQFN Package

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

ABSOLUTE MAXIMUM RATINGS

Junction Temperature ... $+150^{\circ} \mathrm{C}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range............................ $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow) $+260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

TQFN
Junction-to-Ambient Thermal Resistance (θ_{JA}) $\ldots \ldots . . .25^{\circ} \mathrm{C} / \mathrm{W} \quad$ Junction-to-Case Thermal Resistance $\left(\theta_{\mathrm{JC}}\right) \ldots1^{\circ} \mathrm{C} / \mathrm{W}$
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 50 \Omega$ system, $\mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Register settings as defined in tables following the specification tables.) (Note 2)

SPEC NO.	PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC1a	Supply Voltage	V_{CC}		3.0	3.3	3.6	V
DC19a	Operating Supply Current WCDMA	${ }^{\text {I CC_ }}$	Full-duplex high band		298	390	mA
DC19b			Full-duplex low band		300	390	
DC20			RXIN2 monitor		78	105	
DC21			RXIN4 monitor		78	105	
DC22			RXIN5 monitor		72	95	
DC23			Tx only		236	315	
DC24			Idle Rx		43		
DC25			Idle Tx		40		
DC3	Operating Supply Current AFC-Only Mode	${ }^{\text {I CC_ }}$	AFC DAC and SPI only		175	1000	$\mu \mathrm{A}$
DC5	Operating Supply Current Reference Buffer Mode	${ }^{\text {I CC_ }}$	$\begin{aligned} & \text { REFOUT }=500 \Omega \text { \|\| } 22 \mathrm{pF}, \\ & \text { all else }=\text { off } \end{aligned}$		5.3	7.5	mA
DC6	Operating Supply Current Sleep Mode	${ }^{\text {I CC_ }}$	All functions off		14	1000	$\mu \mathrm{A}$
DC11	Digital Input Logic-High			1.3			V
DC12	Digital Input Logic-Low					0.4	V
DC13	Input Current for Digital Control Pins					10	$\mid \mu \mathrm{Al}$
DC16	GPO Sink Current		$\mathrm{V}_{\text {OUT }}=0.35 \mathrm{~V}$, DOUT_DRV $=01$	1.0	1.8		mA
DC17	GPO Source Current		$\begin{aligned} & V_{\text {OUT }}=V_{C C}-0.3 \mathrm{~V} \\ & \text { DOUT_DRV }=01 \end{aligned}$	1.0	1.9		mA

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS

(MAX2550 EV kit, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables $20-51, \mathrm{~V}_{C C_{-}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{V}_{C C}=3.3 \mathrm{~V}, \overline{\mathrm{~T}}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the input pin of the chip.) (Note 2)

Band I Duplexer Specifications

(Diplexer between antenna and duplexer loss: 0.3 dB (applies to all Rx modes).)
Antenna—Uplink Port (Applies to Uplink WCDMA Rx Mode on RXIN1)

BAND (MHz)	$\begin{gathered} \text { Uplink } \\ 1920 \text { to } 1980 \end{gathered}$	1 to 1870	$\begin{gathered} 1870 \text { to } \\ 1920 \end{gathered}$	$\begin{gathered} 1980 \text { to } \\ 2020 \end{gathered}$	$\begin{gathered} 2020 \text { to } \\ 2200 \end{gathered}$	$\begin{gathered} 2300 \text { to } \\ 2500 \end{gathered}$	$\begin{gathered} 2500 \text { to } \\ 4500 \end{gathered}$	$\begin{gathered} 4500 \text { to } \\ 12750 \end{gathered}$
ATTENUATION (dB)	Attenuation	Minimum Attenuation						
	2	32	12	12	37	27	12	7
Rx SAW FILTER RESPONSE								
BAND (MHz)	Out of band							
ATTENUATION (dB)	Required minimum attenuation relative to in-band							
	25							

Band I Uplink WCDMA Rx Mode on RXIN1 (Full Duplex)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Wb1fu-0	Frequency Band	WCDMA FDD Band I uplink (lowest to highest channel center frequency)	1922.4		1977.6	MHz
Wb1fu-1	Sensitivity 3GPP TS25.104 Section 7.2.1	Tx on at -27 dBm , LNA gain mid gain, PGA gain register set to 9 , assumed SNDR > -17.5 dB at sensitivity, using UL reference measurement channel (12.2kbps) as specified in A. 2 3GPP 25.104, tested by measurement of SNDR at output on CW input signal at -90dBm, SNDR at MAX-PHY filter output established with FFT, LNA linearity set to high		-116	-107	dBm
Wb1fu-1a	Sensitivity with LNA in High-Gain Mode	Tx on at -27dBm, LNA gain high, PGA gain register set to 6, assumed SNDR > -17.5 dB at sensitivity, using UL reference measurement channel (12.2kbps) as specified in A. 2 3GPP 25.104, tested by measurement of SNDR at output on CW input signal at -90dBm, SNDR at MAX-PHY filter output established with FFT, LNA linearity set to high		-119	-107	dBm
Wb1fu-3	High-Level EVM WCDMA	$P_{I N}=-20 \mathrm{dBm}$, LNA gain low, PGA gain register set to 1		4.5		\%

MAX2550

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2550 EV kit, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables $20-51, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{V}_{C C}=3.3 \mathrm{~V}, \overline{\mathrm{~T}}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the input pin of the chip.) (Note 2)

Band I Uplink WCDMA Rx Mode on RXIN1 (Full Duplex) (continued)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Wb1fu-4	Sensitivity with Adjacent Channel Interference 3GPPP TS25.104 Section 7.4.1	Tx on -27 dBm , LNA gain high, PGA gain register set to 3 , assumed SNDR > -17.5 dB at sensitivity, inferring signals at front-end input -28 dBm , at 5 MHz offset and -5 MHz offset and modulated as in 3GPP. Using UL reference measurement channel (12.2 kbps) as specified in A. 2 3GPP 25.104. Production tested by measurement if SNDR at output on CW input signal at -90 dBm . SNDR at MAX-PHY filter output established with FFT.		-109	-101	dBm
Wb1fu-5	Sensitivity with In-Band Blocking Interference 3GPPP TS25.104 Section 7.5.1	Tx on -27dBm, LNA gain high, PGA gain register set to 6 , assumed SNDR $>-17.5 \mathrm{~dB}$ at sensitivity, inferring signals at front-end input -30 dBm , at 10 MHz offset and -5 MHz offset and modulated as in 3GPPP. Using UL reference measurement channel (12.2 kbps) as specified in A. 2 3GPP 25.104. Production tested by measurement if SNDR at output on CW input signal at -90 dBm test only worst case in production. SNDR at MAX-PHY filter output established with FFT.		-117	-101	dBm
Wb1fu-6	Sensitivity with Out-of-Band Blocking Interference 3GPP TS25.104 Section 7.5.1	Front-end assumed response as above, Tx on at -27 dBm , LNA high gain, PGA gain register set to 6 , assumed SNDR > -17.5dB at sensitivity, interfering signal at front-end input -15 dBm CW, 1 MHz to 1900 MHz and 2000 MHz to 12750 MHz using UL reference measurement channel (12.2 kbps) as specified in A. 2 3GPP 25.104, tested by measurement of SNDR at output on CW input signal at -90dBm, SNDR at MAX-PHY filter output established with FFT (Note 3)		-112	-101	dBm

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2550 EV kit, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables 20-51, $\mathrm{V}_{\mathrm{CC}_{-}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\mathrm{REFIN}}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{V}_{C C}=3.3 \mathrm{~V}, \overline{\mathrm{~T}}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the input pin of the chip.) (Note 2)

Band I Uplink WCDMA Rx Mode on RXIN1 (Full Duplex) (continued)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Wb1fu-8	Sensitivity with Intermodulation Interference 3GPP TS25.104 Section 7.6.1	Tx on at -27dBm; LNA gain high; PGA gain register set to 6; assumed SNDR > -17.5dB at sensitivity; interfering signals at front-end input -38 dBm , at 10 MHz offset (CW) and 20 MHz offset (modulated) as in 3GPP; using UL reference measurement channel (12.2 kbps) as specified in A. 2 3GPP 25.104; tested by measurement of SNDR at output on CW input signal at -90dBm; SNDR at MAX-PHY filter output established with FFT (Note 3)		-118	-101	dBm
		30 MHz to 1 GHz , measured in 100 kHz BW		-100	-60	
Wb1fu-10	Spurious Emissions Out-of-Band 3GPP TS25.104 Section 7.7.1	1 GHz to 12.75 GHz , measured in 1 MHz BW, with the exception of frequencies between 12.5 MHz below the first carrier frequency and 12.5 MHz above the last carrier frequency used by the BS (Note 3)		-75	-50	dBm
Wb1fu-11	Spurious Emissions in Receive Bands 3GPP TS25. 104 Section 7.9.2	Front-end assumed response as above, 1920MHz to 1980 MHz (Note 3)		-95	-80	dBm
Wb1fu-12	Conversion Gain High LNA Gain	LNA high gain; PGA gain register set to 6; tested on CW input signal at -90 dBm ; calculated by subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the 16-bit output	21	30	36	dB
Wb1fu-13	Conversion Gain Mid LNA Gain	LNA mid gain; PGA gain register set to 9; tested on CW input signal at -90dBm; calculated by subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the 16-bit output	21	30	36	dB
Wb1fu-14	Conversion Gain Low LNA Gain	LNA gain low; PGA gain register set to 1; tested on CW input signal at -20 dBm ; calculated by subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the 16-bit output	-13	-7	-3.5	dB

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2550 EV kit, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables 20-51, $\mathrm{V}_{\mathrm{CC}_{-}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\mathrm{REFIN}}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{V}_{C C}=3.3 \mathrm{~V}, \overline{\mathrm{~T}}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the input pin of the chip.) (Note 2)

Antenna—Downlink Port (Applies to Downlink WCDMA Rx Mode on RXIN5)

BAND (MHz)	Downlink 2110 to 2170	1 to 2025	2025 to 2050	2050 to 2095	2185 to 2230	2230 to 2255	2255 to 12750	
ATTENTUATION (dB)	Attenuation	Minimum Attenuation						
	2	15	10	0	0	10	15	

Band I Downlink WCDMA Rx Mode on RXIN5 (Monitor)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Wb1fd-0	Frequency Band		2112.4		2167.6	MHz
Wb1fd-1	Sensitivity 3GPP TS25.101 Section 7.3.1	LNA gain high, PGA gain register set to 11, assumed SNDR > -7dB at sensitivity, using UL reference measurement channel, (12.2 kbps) as specified in C.3.1 3GPP 25.101, tested by measurement of SNDR at output on CW input signal at -90dBm, SNDR at MAX-PHY filter output established with FFT, LNA linearity set to high		-110		dBm
Wb1fd-4	Sensitivity with Adjacent Channel Interference 3GPP TS25.101 Section 7.5.1	LNA gain high; PGA gain register set to 11; assumed SNDR > -7dB at sensitivity; interfering signals at front-end input -52 dBm , at 5 MHz offset and -5 MHz offset and modulated as in 3GPP; using UL reference measurement channel (12.2kbps) as specified in C.3.1 3GPP 25.101; production tested by measurement of SNDR at output on CW input signal at -90dBm; SNDR at MAX-PHY filter output established with FFT		-110		dBm
Wb1fd-4a	Sensitivity with Adjacent Channel Interference 3GPP TS25.101 Section 7.5.1 CASE 2	LNA gain medium, PGA gain register set to 6; tested SNDR at output; interfering signals at front-end input -25 dBm , at 5 MHz offset and -5 MHz offset and modulated as in 3GPP; using UL reference measurement channel (12.2 kbps) as specified in C.3.1 3GPP 25.101; production tested by measurement of SNDR at output on CW input signal at -69dBm; SNDR at MAX-PHY filter output established with FFT		-94		dBm

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2550 EV kit, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables 20-51, $\mathrm{V}_{\mathrm{CC}_{-}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\mathrm{REFIN}}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{V}_{C C}=3.3 \mathrm{~V}, \overline{\mathrm{~T}}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the input pin of the chip.) (Note 2)

Band I Downlink WCDMA Rx Mode on RXIN5 (Monitor) (continued)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Wb1fd-8	Sensitivity with Intermodulation Interference 3GPP TS25.101 Section 7.8.1	LNA gain high, PGA gain register set to 11; assumed SNDR > -7dB at sensitivity; interfering signals at front-end input -46 dBm , at 10 MHz offset (CW) and 20 MHz offset (modulated) as in 3GPP; using UL reference measurement channel (12.2kbps) as specified in C.3.1 3GPP 25.101; production tested by measurement of SNDR at output on CW input signal at -90dBm; SNDR at MAX-PHY filter output established with FFT		-110		dBm
Wb1fd-10	Spurious Emissions Out-of-Band 3GPP TS25.101 Section 7.9.1	30 MHz to 12750 MHz in 100 kHz bandwidth (Note 3)		-80	-60	dBm
Wb1fd-11	Spurious Emissions in Receive Bands 3GPP TS25.101 section 7.9.2	Front-end assumed response as above, 1920MHz to 1980 MHz and 2110 MHz to 2170MHz (Note 3)		-95	-80	dBm
Wb1fd-12	Conversion Gain High LNA Gain	LNA gain high; PGA gain register set to 11; tested on CW input signal at -90dBm; calculated by subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the 16 -bit output	33	44	49	dB
Wb1fd-13	Conversion Gain Low LNA Gain	LNA gain low; PGA gain register set to 0; tested on CW input signal at -20dBm; calculated by subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the 16 -bit output	-22	-13	-7.5	dB

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2550 EV kit, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables $20-51, \mathrm{~V}_{C C_{-}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{V}_{C C}=3.3 \mathrm{~V}, \overline{\mathrm{~T}}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the input pin of the chip.) (Note 2)

DCS Band Rx Mode on RXIN2
Assumed External Front-End Filtering Characteristics Between Antenna and LNA

BAND (MHz)	In-Band 1805 to 1880	Out of Band (a) 0.1 to 1705	Out of Band (b) 1705 to 1785	Out of Band (c) 1920 to 1980	Out of Band (d) 1980 to 4000	
ATTENUATION	Attenuation	Minimum Attenuation				
(dB)	3.5	27.5	15.5	15.5	27.5	

DCS Band Rx Mode on RXIN2

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
dcs -0	RF Frequency	At pin RXIN2, 200KHz channel raster, lowest to highest channel center frequency	1805.2		1879.8	MHz
dcs-1	Sensitivity 3GPP TS100.910 Section 6.2	LNA gain high, PGA gain register set to 12; assumed SNDR > 7dB at sensitivity; using static E-TCH/F as specified in 3GPP TS 100.910; production tested by measurement of SNDR at output on CW input signal at -102 dBm ; SNDR at MAX-PHY filter output established with FFT		-108		dBm
dcs-2	Conversion Gain High LNA Gain	LNA gain high, PGA gain register set to 12; production tested on CW input signal at -102 dBm ; calculated by subtracting the FE input signal in dBm from the output signal in dBFS at digital filter outputs, includes digital gain to the16-bit output	40	46		dB

EGSM/WCDMA Band Rx Mode on RXIN4

External Front-End Filtering Characteristics EGSM

BAND (MHz)	In-Band 925 to 960	905 to 915	Out of Band (a) 0.1 to 905	Out of Band (b) N/A	Out of Band (c) N/A	Out of Band (d) 980 to 12750	
ATTENUATION (dB)	Attenuation	Minimum Attenuation					
	3.5	19.5	24.5	N/A	N/A	24.5	

Assumed External Front-End Filtering Characteristics Between Antenna and LNA: (WCDMA on RXIN4)

BAND (MHz)	Downlink 869 to 894	1 to 804	824 to 849	914 to 3000	3000 to 6000	
	Attenuation	Minimum Attenuation				
	3	37	51	35	20	

MAX2550

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2550 EV kit, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables $20-51, \mathrm{~V}_{C C_{-}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{V}_{C C-}=3.3 \mathrm{~V}, \overline{\mathrm{~T}}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the input pin of the chip.) (Note 2)

EGSM/WCDMA Band Rx Mode on RXIN4

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX
G900-0	RF Frequency	At pin RXIN4, 200KHz channel raster, EGSM lowest to highest channel center frequency	925.2	959.8	MHz
G900-1	Sensitivity 3GPP TS100.910 Section 6.2	LNA gain high, PGA gain register set to 12; assumed SNDR > 7dB at sensitivity; using static E-TCH/F as specified in 3GPP TS 100.910; production tested by measurement of SNDR at output on CW input signal at -102dBm; SNDR at MAX-PHY filter output established with FFT	-110	dBm	
G900-2	Conversion Gain High LNA Gain	LNA gain high, PGA gain register set to 12; production tested on CW input signal at -102dBm; calculated by subtracting the FE input signal in dBm from the output signal in dBFS at digital filter outputs, includes digital gain to the16-bit output	43	50	dB

Band V Duplexer Specifications

Antenna-Uplink Port (Applies to Uplink WCDMA Rx Mode on RXIN3)

BAND (MHz)	Uplink 824 to 849	1 to 804	869 to 894	894 to 2500	2500 to 3000	3000 to 6000
	Attenuation					
	2	32	43	32	22	15
Rx SAW FILTER RESPONSE						
BAND (MHz)	Out-of-Band					
ATTENUATION (dB)	Required minimum attenuation relative to in-band					
	25					

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2550 EV kit, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables 20-51, $\mathrm{V}_{\mathrm{CC}_{-}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\mathrm{REFIN}}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{V}_{C C}=3.3 \mathrm{~V}, \overline{\mathrm{~T}}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the input pin of the chip.) (Note 2)

Band V Uplink WCDMA Rx Mode on RXIN3 (Full Duplex)

| SPEC NO. | PARAMETER | CONDITIONS | MIN | TYP | MAX |
| :--- | :--- | :--- | :--- | :--- | :--- | UNITS

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2550 EV kit, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables 20-51, $\mathrm{V}_{\mathrm{CC}_{-}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\mathrm{REFIN}}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{V}_{C C}=3.3 \mathrm{~V}, \overline{\mathrm{~T}}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the input pin of the chip.) (Note 2)

Band V Uplink WCDMA Rx Mode on RXIN3 (Full Duplex) (continued)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Wb5fu-6	Sensitivity with Out-of-Band Blocking Interference 3GPP TS25.104 Section 7.5.1	Front-end assumed response as above; Tx on at -27dBm; LNA gain high; PGA gain register set to 6; assumed SNDR >-17.5dB at sensitivity; interfering signal at Front-end input -15 dBm CW; 1 MHz to 804 MHz and 869 MHz to 12750 MHz with 1 MHz steps; no exceptions allowed; (test only worst case in production); using UL reference measurement channel (12.2 kbps) as specified in A. 2 3GPP 25.104; tested by measurement of SNDR at output on CW input signal at -90 dBm ; SNDR at MAX-PHY filter output established with FFT		-111		dBm
Wb5fu-7	Sensitivity with Intermodulation Interference 3GPP TS25.104 Section 7.6.1	Tx on at -27dBm; LNA gain high; PGA gain register set to 6; assumed SNDR > -17.5 dB at sensitivity; interfering signals at front-end input -38 dBm , at 10 MHz offset (CW) and 20 MHz offset (modulated) as in 3GPP; using UL reference measurement channel (12.2kbps) as specified in A. 2 3GPP 25.104; tested by measurement of SNDR at output on CW input signal at -90dBm; SNDR at MAX-PHY filter output established with FFT (Note 3)		-117	-101	dBm
		30 MHz to 1 GHz , measured in 100 kHz BW		-100	-60	
Wb5fu-8	Spurious Emissions Out-of-Band 3GPP TS25.104 Section 7.7.1	1 GHz to 12.75 GHz , measured in 1 MHz BW, with the exception of frequencies between 12.5 MHz below the first carrier frequency and 12.5 MHz above the last carrier frequency used by the BS (Note 3)		-86	-50	dBm
Wb5fu-10	Conversion Gain High LNA Gain	LNA high gain; PGA gain register set to 6; tested on CW input signal at -90dBm; calculated by subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the 16-bit output	22	29.5	35	dB
Wb5fu-11	Conversion Gain Mid LNA Gain	LNA mid gain; PGA gain register set to 9; tested on CW input signal at -90dBm; calculated by subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the 16 -bit output	22	29	35	dB

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2550 EV kit, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables 20-51, $\mathrm{V}_{\mathrm{CC}_{-}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\mathrm{REFIN}}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{V}_{C C}=3.3 \mathrm{~V}, \overline{\mathrm{~T}}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the input pin of the chip.) (Note 2)

Band V Uplink WCDMA Rx Mode on RXIN3 (Full Duplex) (continued)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX
Wb5fu-12	LNA gain low; PGA gain register set to 1; tested Conversion Gain Low LNA Gain subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the 16-bit output	-17.5	-10.5	-6	dB

Antenna—Downlink Port (Applies to Downlink WCDMA Rx Mode on RXIN4)

BAND (MHz)	Downlink 869 to 894	1 to 804	824 to 849	914 to 3000	3000 to 6000		
ATTENUATION (dB)	Attenuation	Minimum Attenuation					
	3	37	51	35	20		

Band V Downlink WCDMA Rx Mode on RXIN4 (Monitor)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Wb5fd-0	Frequency Band		867.4		891.6	MHz
Wb5fd-1	Sensitivity 3GPP TS25.101 Section 7.3.1	LNA gain high, PGA gain register set to 11, assumed SNDR > -7dB at sensitivity, using UL reference measurement channel (12.2 kbps) as specified in C.3.1 3GPP 25.101, tested by measurement of SNDR at output on CW input signal at -90dBm, SNDR at MAX-PHY filter output established with FFT, LNA linearity set to high		-111.5	-104.7	dBm
Wb5fd-4	Sensitivity with Adjacent Channel Interference 3GPP TS25.101 Section 7.5.1	LNA gain high; PGA gain register set to 11; assumed SNDR > -7dB at sensitivity; interfering signals at front-end input -52 dBm , at 5 MHz offset and -5 MHz offset and modulated as in 3GPP; using UL reference measurement channel (12.2kbps) as specified in C.3.1 3GPP 25.101; tested by measurement of SNDR at output on CW input signal at -90 dBm ; SNDR at MAX-PHY filter output established with FFT		-111	-101	dBm
Wb5fd-9	Spurious Emissions Out-of-Band 3GPP TS25.101 Section 7.9.1 (Note 3)	30 MHz to $1000 \mathrm{MHz}, 100 \mathrm{kHz}$ bandwidth		-100	-60	dBm
		1000 MHz to $12750 \mathrm{MHz}, 1 \mathrm{MHz}$ bandwidth		-98	-50	

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2550 EV kit, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables $20-51, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{V}_{C C-}=3.3 \mathrm{~V}, \overline{\mathrm{~T}}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the input pin of the chip.) (Note 2)

Band V Downlink WCDMA Rx Mode on RXIN4 (Monitor) (continued)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Wb5fd-10	Spurious Emissions in Receive Bands 3GPP TS25.101 Section 7.9.2	Front-end assumed response as above, 824 MHz to 849 MHz and 869 MHz to 894 MHz (Note 3)		-95	-80	dBm
Wb5fd-11	Conversion Gain High LNA Gain	LNA gain high; PGA gain register set to 11; tested on CW input signal at -90 dBm ; calculated by subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the 16 -bit output	40	45	48.5	dB
Wb5fd-12	Conversion Gain Low LNA Gain	LNA gain low; PGA gain register set to 0; tested on CW input signal at -20dBm; calculated by subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the16-bit output	-18	-14	-10	dB

Band VIII Duplexer Specifications

Antenna—Uplink Port (Applies to Uplink WCDMA Rx Mode on RXIN3)

BAND (MHz)	$\begin{gathered} \text { Uplink } \\ 880 \text { to } 915 \end{gathered}$	1 to 870	925 to 960	960 to 2500	2500 to 3000	3000 to 6000
ATTENUATION (dB)	Attenuation			Minimum Attenuation		
	2	32	43	32	22	15
Rx SAW FILTER RESPONSE						
BAND (MHz)	Out-of-band					
ATTENUATION (dB)	Required minimum attenuation relative to in-band					
	25					

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2550 EV kit, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables 20-51, $\mathrm{V}_{\mathrm{CC}_{-}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\mathrm{REFIN}}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \overline{\mathrm{~T}}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the input pin of the chip.) (Note 2)

Band VIII Uplink WCDMA Rx Mode on RXIN3 (Full Duplex)

| SPEC NO. | PARAMETER | CONDITIONS | MIN | TYP | MAX |
| :--- | :--- | :--- | :--- | :--- | :--- | UNITS

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2550 EV kit, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables 20-51, $\mathrm{V}_{\mathrm{CC}_{-}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\mathrm{REFIN}}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{V}_{C C}=3.3 \mathrm{~V}, \overline{\mathrm{~T}}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the input pin of the chip.) (Note 2)

Band VIII Uplink WCDMA Rx Mode on RXIN3 (Full Duplex) (continued)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Wb8fu-6	Sensitivity with Out-of-Band Blocking Interference 3GPP TS25.104 Section 7.5.1	Front-end assumed response as above; Tx on at -27 dBm ; LNA gain high; PGA gain register set to 6; assumed SNDR > -17.5dB at sensitivity; interfering signal at front-end input -15 dBm CW; 1 MHz to 804 MHz and 869 MHz to 12750 MHz with 1 MHz steps; no exceptions allowed; (test only worst case in production); using UL reference measurement channel (12.2kbps) as specified in A. 2 3GPP 25.104; tested by measurement of SNDR at output on CW input signal at -90dBm; SNDR at MAX-PHY filter output established with FFT (Note 3)		-113	-101	dBm
Wb8fu-7	Sensitivity with Intermodulation Interference 3GPP TS25.104 Section 7.6.1	Tx on at -27dBm; LNA gain high; PGA gain register set to 6; assumed SNDR > -17.5dB at sensitivity; interfering signals at front-end input -38 dBm , at 10 MHz offset (CW) and 20 MHz offset (modulated) as in 3GPP; using UL reference measurement channel (12.2kbps) as specified in A. 2 3GPP 25.104; tested by measurement of SNDR at output on CW input signal at -90dBm; SNDR at MAX-PHY filter output established with FFT (Note 3)		-118	-101	dBm
		30 MHz to 1 GHz , measured in 100 kHz BW		-100	-60	
Wb8fu-8	Spurious Emissions Out-of-Band 3GPP TS25.104 Section 7.7.1	1 GHz to 12.75 GHz , measured in 1 MHz BW, with the exception of frequencies between 12.5 MHz below the first carrier frequency and 12.5 MHz above the last carrier frequency used by the BS (Note 3)		-78	-50	dBm
Wb8fu-10	Conversion Gain High LNA Gain	LNA high gain; PGA gain register set to 6; tested on CW input signal at -90dBm; calculated by subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the 16-bit output	23	30	35	dB
Wb8fu-11	Conversion Gain Mid LNA Gain	LNA mid gain; PGA gain register set to 9; tested on CW input signal at -90dBm; calculated by subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the 16-bit output	22	29.5	35	dB

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2550 EV kit, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables $20-51, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{V}_{C C}=3.3 \mathrm{~V}, \overline{\mathrm{~T}}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the input pin of the chip.) (Note 2)

Band VIII Uplink WCDMA Rx Mode on RXIN3 (Full Duplex) (continued)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Wb8fu-12	Conversion Gain Low LNA Gain	LNA gain low; PGA gain register set to 1 ; tested on CW input signal at -20dBm; calculated by subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the 16-bit output	-16	-9	-5	dB

Antenna—Downlink Port (Applies to Downlink WCDMA Rx Mode on RXIN4)

BAND (MHz)	Downlink 925 to 960	1 to 804	880 to 915	914 to 3000	3000 to 6000		
ATTENUATION (dB)	Attenuation	Minimum Attenuation					
	3	37	51	35	20		

Band VIII Downlink WCDMA Rx Mode on RXIN4 (Monitor)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Wb8fd-0	Frequency Band		927.4		957.6	MHz
Wb8fd-1	Sensitivity 3GPP TS25.101 Section 7.3.1	LNA gain high, PGA gain register set to 11, assumed SNDR > -7dB at sensitivity, using UL reference measurement channel (12.2 kbps) as specified in C.3.1 3GPP 25.101, tested by measurement of SNDR at output on CW input signal at -90dBm, SNDR at MAX-PHY filter output established with FFT, LNA linearity set to high, specified data is for a manual built fcLGA using 2.7pF filter caps		-111.5	-104.7	dBm
Wb8fd-4	Sensitivity with Adjacent Channel Interference 3GPP TS25.101 Section 7.5.1	LNA gain high; PGA gain register set to 11; assumed SNDR > -7dB at sensitivity; interfering signals at front-end input -52 dBm , at 5 MHz offset and -5 MHz offset and modulated as in 3GPP; using UL reference measurement channel (12.2kbps) as specified in C.3.1 3GPP 25.101; tested by measurement of SNDR at output on CW input signal at -90dBm; SNDR at MAX-PHY filter output established with FFT		-111	-101	dBm

MAX2550

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2550 EV kit, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables $20-51, \mathrm{~V}_{C C_{-}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\mathrm{REFIN}}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred. Typical values are at $\mathrm{V}_{C C}=3.3 \mathrm{~V}, \overline{\mathrm{~T}}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and mid-band, unless otherwise noted. Tx specifications are referred to the input pin of the chip.) (Note 2)

Band VIII Downlink WCDMA Rx Mode on RXIN4 (Monitor) (continued)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Wb8fd-9	Spurious Emissions Out-of-Band 3GPP TS25.101 Section 7.9.1 (Note 3)	30 MHz to $1000 \mathrm{MHz}, 100 \mathrm{kHz}$ bandwidth		-100	-60	dBm
		1000MHz to $12750 \mathrm{MHz}, 1 \mathrm{MHz}$ bandwidth		-90	-50	
Wb8fd-10	Spurious Emissions in Receive Bands 3GPP TS25. 101 Section 7.9.2	Front-end assumed response as above, 925 MHz to 960 MHz and 880 MHz to 915 MHz (Note 3)		-100	-80	dBm
Wb8fd-11	Conversion Gain High LNA Gain	LNA gain high; PGA gain register set to 11; tested on CW input signal at -90dBm; calculated by subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the 16 -bit output	40	44.5	49	dB
Wb8fd-12	Conversion Gain Low LNA Gain	LNA gain low; PGA gain register set to 0; tested on CW input signal at -20dBm; calculated by subtracting the FE input signal in dBm from the ADC output signal in dBFS at digital filter outputs, includes digital gain to the16-bit output	-17.5	-12	-8.5	dB

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Tx MODE AC ELECTRICAL CHARACTERISTICS

(MAX2550 EV kit, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, WCDMA downlink TM1 16 channels with -14 dBFs peak level into sigma-delta modulator inside baseband chip (see the Baseband Input Level section), registers set as described in Tables 20-51, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V , $\mathrm{f}_{\text {REFIN }}=$ 19.2 MHz , typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, and mid-band, unless otherwise noted. Tx specifications are referred to the input pin of the chip.) (Note 2)

SPEC NO.	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
W1	RF Frequency Range	Center of the WCDMA signal, Band I output (TXOUTH)		2112.4		2167.6	MHz
W1a		Band V and VIII output (TXOUTL)	Band V	867.4		891.6	MHz
W1b			Band VIII	927.4		957.6	
W2	Linear Output Power	TX_GAIN = 1023		0			dBm
W3	Adjacent Channel Power Ratio	$\begin{aligned} & \text { Offset frequency }= \pm 5 \mathrm{MHz} \text { in } 3.84 \mathrm{MHz} \text { BW, } \\ & \text { Pout }=0 \mathrm{dBm} \end{aligned}$		-55			dBc
W4	Alternate Channel Power Ratio	$\begin{aligned} & \text { Offset frequency }= \pm 10 \mathrm{MHz} \text { in } 3.84 \mathrm{MHz} \text { BW, } \\ & \text { Pout }=0 \mathrm{dBm} \end{aligned}$			-70		dBc
W5	Rx Band Noise Power, Pout $\leq 0 \mathrm{dBm}$ (Note 3)	Noise measured at -80 MHz offset in 3.84 MHz BW, then convert to per Hz , Band I output			-149	-142	$\mathrm{dBm} / \mathrm{Hz}$
W5a		Noise measured at -45 MHz offset in 3.84 MHz BW, then convert to per Hz , Band V and VIII output			-145	-140	$\mathrm{dBm} / \mathrm{Hz}$
W6	EVM	POUT $=0 \mathrm{dBm}$			4		\%
W6a	RCDE	TM6, 8 channels at 0dBm			-28		dB
W7	Minimum Output Power	TX_GAIN = 0			-61	-45	dBm
W8	Output Power Deviation from $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$ (Note 3)	TX_GAIN = 1023, high band		-1.5	+0.4	+2	dB
		Low band		-0.5	+1.5	+3.5	
W9	Output Power Deviation from $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)	TX_GAIN = 1023, high band		-3	-0.8	0	dB
		Low band		-3.5	-1.6	0	
W10	Power Control Step Size Accuracy	Five calibration points o range to create four line interpolated 1dB TX_GA specified power range 1 dB output power step	er the power control ar regions, any linearly N step over the W2 and W7) produces within this error range.		± 0.25		dB
W11	Power Control Step Size Accuracy	Five calibration points o range to create four line interpolated 10dB TX_G specified power range 10dB output power step	er the power control ar regions, any linearly AIN step over the W2 and W7) produces within this error range.		± 0.75		dB

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS: General

(MAX2550 EV kit, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables $20-51, \mathrm{~V}_{\mathrm{CC}_{-}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\mathrm{REFIN}}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{C}_{-}}^{-}=3.3 \mathrm{~V}$, unless otherwise noted.) (Note 2)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
REFERENCE FREQUENCY INPUT							
R1	Input Level	Test condition	125		600	$m V_{P-P}$	
R2	Input Frequency	Reference divider set to divide-by-2 for frequencies higher than 26 MHz	13	19.2	40	MHz	
REFERENCE FREQUENCY OUTPUT							
RO1a	REFOUT Output Level, AC	500 $\mathrm{II}^{\text {\| } 22 \mathrm{pF}}$ load, REFOUT_LV_CMOS_SEL = 1	110	320	500	$m V_{P-P}$	
RO1b	REFOUT Output Level, DC			0.8		V	
RO2	REFOUT Output Amplitude	500Ω \|	22pF load, REFOUT_LV_CMOS_SEL = 0	2.25	2.7		$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$
RO4	REFOUT Output Frequency	Matches REFIN frequency (FREF)	13	19.2	40	MHz	
Rx DIGITAL LOW-VOLTAGE DIFFERENTIAL SIGNALING OUTPUT INTERFACE							
LV0	Output Bit Rate on Each I and Q	Test condition		153.6		Mbps	
LV1	Output Common Mode			1.2		V	
LV3	Output Differential Swing on Load (Note 3)	120Ω differential output load (Note 3)	100	140	220	$m V_{\text {PEAK }}$	
LV4	Differential Output Resistance			670		Ω	
Tx BASEBAND INTERFACE							
Bb1	Input Bit Rate, on Each I and Q	Test condition		153.6		Mbps	
Bb8	Common Mode Input Voltage			1.25		V	
Bb9	Differential Input Swing		112	140	500	$m V_{P-P}$	
Bb10	Differential Input	Bit TXINDACZI = 1	55	100	140		
Bb11	Resistance (Note 3)	Bit TXINDACZI $=0$	140	220	340	Ω	
Rx RF PLL							
RS1	Valid RF Main Division Ratio Range		62		147		
RS3	Valid Main Fractional Divider Programming Value	20-bit resolution	00000		FFFFF	hex	
RS5	Charge-Pump Current Gain	Using 800 ${ }^{\text {A }}$ setting	0.5	0.82	1.0	mA	
RS6a	VCO Tuning Gain	RXVCO, high band	38	127	216	MHzN	
RS6b	VCO Tuning Gain	RXVCO, low band	21	65	111	MHzN	
RS9	PLL Settling Time	50 kHz loop bandwidth		200		$\mu \mathrm{S}$	

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

AC ELECTRICAL CHARACTERISTICS: General (continued)

(MAX2550 EV kit, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, registers set as described in Tables 20-51, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{f}_{\mathrm{REFI}}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred, typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{C}_{-}}^{-}=3.3 \mathrm{~V}$, unless otherwise noted.) (Note 2)

SPEC NO.	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Tx RF PLL						
TS2	Valid RF Main Division Ratio Range		66		153	
TS3	Valid Reference Division Ratios	Division ratios are 1 or 2	1		2	
TS4	Valid Main Fractional Divider Programming Value	20-bit resolution	00000		FFFFF	hex
TS5	Charge-Pump Current CP	800 $\mu \mathrm{A}$	0.5	0.82	1.0	mA
TS9	PLL Settling Time	50 kHz loop bandwidth		200		$\mu \mathrm{s}$
DAC1	Resolution	Monotonicity is production tested		12		Bits
AFC DAC						
DAC3	Output-Voltage High	Load > 200k Ω to GND, AFCDAC = all 1	2.55	2.68		V
DAC4	Output-Voltage Low			0.37	0.45	V
DAC5	Output Noise	Any code within 0.5 V to 2.5 V output level, 100 Hz to 20kHz		6		$\mu \mathrm{V} / \mathrm{rtHz}$
DAC6	Settling Time	Step from 0.6 V to 2 V , settling to $\pm 10 \mathrm{mV}$				$\mu \mathrm{s}$
DIGITAL TEMPERATURE SENSOR						
T1	Output Code vs. Temperature	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$		5		\%code
T2		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		17		
T3		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		27		
T5	Code Slope	$\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		5		
ISOLATION						
M1	RXIN_ Pin-to-Pin Isolation	Between any RXIN_ pins, with one of the two ports disabled		30		dB
M2	TXOUT_ to RXIN_ Isolation	Between any TXOUT and RXIN_, with both ports on		60		dB

Note 2: Production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Cold and hot are guaranteed by design and characterization.
Note 3: Guaranteed by design and characterization.

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

General Comments

Abstract

MAX-PHY MAX-PHY is Maxim's solution for the digital interface system between the radio IC and the baseband/DSP. It is a multimode, software programmable, digital signal postprocessing engine that processes the data out of the radio IC and produces the digital filtered outputs for use in the DSP. It enables multimode operation of the radio through software control. Maxim offers an evaluation kit for the MAX2550 along with an FPGA-based MAX-PHY evaluation platform. The FPGA includes the recommended digital channel-selection filters. The Verilog code for these filters is also available for integration into the DSP. Contact Maxim for further information.

Additional Information

The specifications in the following pages calculate sensitivity with a specified front-end loss from a measured sig-nal-to-noise and distortion ratio (SNDR) and an assumed minimum output SNDR SENS needed for demodulation at sensitivity. The sensitivity values can be related to noise figure by the formula:

Noise Figure of MAX2550 (dB) = Sensitivity (dBm) -
Front-End Loss (dB) - SNDRSENS (dB) $+174 \mathrm{dBm} / \mathrm{Hz}-$
$10 \times$ LOG(bandwidth in Hz)
Low-noise amplifier (LNA) and programmable-gain amplifier (PGA) gain are set according to the Conditions column in the Electrical Characteristics table. The output SNDR is measured using MAX-PHY and the bandwidth of the measurement is defined by the digital filters in MAXPHY. DC at the output is excluded from the SNDR measurement. SNDR is calculated using an FFT of the output bytes with a typical FFT length of 2^{14} output samples.

Typical Operating Characteristics

(MAX2550 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and $21, \mathrm{~V}_{\text {CC_ }}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2550 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and $21, \mathrm{~V}_{\mathrm{CC}_{-}}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2550 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and $21, \mathrm{~V}_{\mathrm{CC}_{-}}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

RX4 MONITOR MODE, BAND5 SUPPLY CURRENT vs. SUPPLY VOLTAGE

RX3 ONLY MODE, BAND8
SUPPLY CURRENT vs. SUPPLY VOLTAGE

RX4 MONITOR MODE, BAND8 SUPPLY CURRENT vs. SUPPLY VOLTAGE

RX3 IDLE MODE, BAND8 SUPPLY CURRENT vs. SUPPLY VOLTAGE

RX5 MONITOR MODE, BAND1 SUPPLY CURRENT vs. SUPPLY VOLTAGE

MAX2550

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2550 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and 21, $\mathrm{V}_{\text {CC_ }}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

MAX2550

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2550 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and 21, $\mathrm{V}_{\mathrm{CC}_{-}}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2550 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and 21, $\mathrm{V}_{\text {CC_ }}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2550 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and 21, $\mathrm{V}_{\mathrm{CC}_{-}}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2550 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and $21, \mathrm{~V}_{\text {CC_ }}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2550 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and $21, \mathrm{~V}_{\text {CC_ }}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

WCDMA FILTER RESPONSE
vs. OFFSET FREQUENCY

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2550 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and $21, \mathrm{~V}_{\mathrm{CC}_{-}}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2550 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and $21, \mathrm{~V}_{\mathrm{CC}_{-}}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

MAX2550

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2550 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and $21, \mathrm{~V}_{\text {CC_ }}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2550 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and $21, \mathrm{~V}_{\text {CC_ }}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

Tx OUTPUT SPECTRUM, LOW BAND

> BAND8 ADJACENT CHANNEL POWER RATIO AT OdBM vs. FREQUENCY

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2550 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and 21, $\mathrm{V}_{\text {CC_ }}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2550 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and 21, $\mathrm{V}_{\mathrm{CC}_{-}}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2550 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and 21, $\mathrm{V}_{\mathrm{CC}_{-}}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

MAX2550

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2550 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and 21, $\mathrm{V}_{\mathrm{CC}_{-}}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

MAX2550 Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2550 EV kit and MAX-PHY FPGA evaluation platform, $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and $21, \mathrm{~V}_{\mathrm{CC}_{-}}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

MAX2550
Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Typical Operating Characteristics (continued)
(MAX2550 EV kit and MAX-PHY FPGA evaluation platform, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Registers set as described in Tables 20 and $21, \mathrm{~V}_{\mathrm{CC}_{-}}=3.3 \mathrm{~V}, \mathrm{f}_{\text {REFIN }}=19.2 \mathrm{MHz}$, all sensitivity levels and blocker levels are antenna referred.)

TEMPERATURE SENSOR TURN-ON TRANSIENT

$1 \mu \mathrm{~s} / \mathrm{div}$

TEMPERATURE SENSOR SWITCHING
TRANSIENT FROM CODE 4095 TO 0
$1 \mu \mathrm{~s} / \mathrm{div}$

TEMPERATURE SENSOR CODE vs. TEMPERATURE

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Pin Description

PIN	NAME	FUNCTION
1	TXOUTL	Low-Band TXRF Output. Internally matched to 50Ω over the band of operation.
2	GND_TXL	Tx Ground. Connect directly to ground plane.
3	TXOUTH	High-Band TXRF Output. Internally matched to 50Ω over the band of operation.
4	GND_TXH	High-Band Tx Output Ground. Connect directly to ground plane.
5	DIN	Data Input of the 4-Wire Serial Interface
6	TXINI+	Transmitter Noninverting In-Phase Input. Accepts baseband sigma-delta modulated digital bit streams. Connect directly to the baseband processor.
7	TXINI-	Transmitter Inverting In-Phase Input. Accepts baseband sigma-delta modulated digital bit streams. Connect directly to the baseband processor.

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Pin Description (continued)

PIN	NAME	FUNCTION
8	TXINQ+	Transmitter Noninverting Quadrature Input. Accepts baseband sigma-delta modulated digital bit streams. Connect directly to the baseband processor.
9	TXINQ-	Transmitter Inverting Quadrature Input. Accepts baseband sigma-delta modulated digital bit streams. Connect directly to the baseband processor.
10	$\mathrm{V}_{\text {CC_T }}$ TXBB	Baseband Tx Path Supply. Connect to a regulated supply voltage. Bypass each supply to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
11	CPOUT_TX	Charge-Pump Output for Tx Synthesizer. Also used as the tuning voltage for Tx VCO. Connect to an external loop filter.
12	VCC_TXPLL	Tx Synthesizer Supply. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
13	REFOUT	Reference Clock Buffer Output. Configurable by the REFEN pin and SPI. See the REFOUT Functionality section for details.
14	V CC_REF	Reference Buffer Supply. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
15	REFIN	Reference Input Pin. Connected to TCXO. Requires a DC-blocking capacitor (1nF).
16	BYPASS_TX	Tx VCO Bias Bypass. Bypass to ground with a 470nF capacitor as close as possible.to the pin.
17	GND_TXVCO	Tx VCO Ground. Connect to the PCB ground plane with a separate via.
18	VCC_TXVCO	Tx VCO Supply. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
19	AFC_OUT	AFC DAC Output. The DAC is controlled by the register TXLO_AFCDAC (Table 43).
20	RXOUTI+	Receiver Noninverting In-Phase Output. Digital sigma-delta modulated LVDS output. Connect directly to the baseband processor.
21	RXOUTI-	Receiver Inverting In-Phase Output. Digital sigma-delta modulated LVDS output. Connect directly to the baseband processor.
22	RXOUTQ+	Receiver Noninverting Quadrature Output. Digital sigma-delta modulated LVDS output. Connect directly to the baseband processor.
23	RXOUTQ-	Receiver Inverting Quadrature Output. Digital sigma-delta modulated LVDS output. Connect directly to the baseband processor.
24	$V_{\text {CC_RXBB }}$	Baseband Rx Path Supply. Regulated Power-Supply Input. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
25	N.C.	No Connection. Leave unconnected.
26	VCC_CLKVCO	Clock Generation VCO Supply. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Pin Description (continued)

PIN	NAME	FUNCTION
27	GND_CLKVCO	Clock Generation Synthesizer Ground. Connect clock generation synthesizer ground to the PCB ground plane with a separate via.
28	VCC_CLKPLL	Clock Generation Synthesizer Supply. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
29	SCLK	SPI Interface Clock Input. Data is clocked in to the serial data input on the rising edge of SCLK. See Figure 4 for details.
30	$\mathrm{V}_{\text {CC_RXPLL }}$	Rx Synthesizer Supply. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
31	CPOUT_RX	Rx Synthesizer Charge-Pump Output. Also used as the tuning voltage for Rx VCO. Connect to an external loop filter.
32	BYPASS_RX	Rx VCO Bias Bypass. Bypass to ground with a 470nF capacitor as close as possible to the pin.
33	GND_RXVCO	Rx VCO Ground. Connect ground to the PCB ground plane with a separate via.
34	VCC_RXVCO	Rx VCO Supply. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
35	DOUT	SPI Data Output
36	VCC_MXR	Rx Mixer Supply. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
37	MIXINH	High-Band Rx Mixer Input. RF input to mixer from an external filter (optional). Internally DC-blocked and matched to 50Ω.
38	MININL	Low-Band Rx Mixer Input. RF input to mixer from an external filter (optional). Internally DC-blocked and matched to 50Ω.
39	GPO3	General-Purpose Output. Controlled by register 7 (Table 20). GPO3 can also be configure as a PLL lock-detect output.
40	VCC_LNA	LNA Supply. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
41	LNAOUTL	Low-Band LNA Output. RF output from LNA 3 to external SAW filter. Internally DC-blocked and matched to 50 .
42	LNAOUTH	High-Band LNA Output. RF Output from LNA 1 to an external SAW filter. Internally DC-blocked and matched to 50Ω.
43	REFEN	Configuration for REFOUT. When REFEN $=0$, REFOUT can be configured for CMOS or low-voltage output by the SPI interface. See the REFOUT Functionality section. When REFEN $=1$, REFOUT is configured as REFIN buffer with CMOS output.
44	RXIN2	Low-Noise Amplifier Input 2. Requires AC-coupling and external matching.
45	GND_LNAP	PCS LNA Ground. Connect directly to ground plane.
46	RXIN1	Low-Noise Amplifier Input 1. Requires AC-coupling and external matching.
47	GPO2	General-Purpose Output. Controlled by register 7<3:2>.

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Pin Description (continued)

PIN	NAME	FUNCTION
48	RXIN3	Low-Noise Amplifier Input 3. Requires AC-coupling and external matching.
49	GND_LNAC	Ground for Cellular LNA. Connect directly to the ground plane.
50	RXIN4	Low-Noise Amplifier Input 4. Requires AC-coupling and external matching.
51	GND_LNAI	IMT LNA Ground. Connect directly to the ground plane.
52	RXIN5	Low-Noise Amplifier Input 5. Requires AC-coupling and external matching.
53	GPO1	General-Purpose Output. Controlled by register 23<25:24>.
54	$\overline{\text { CS }}$	Serial-Interface Chip Select. See Figure 4.
55	VCC_TXRF $^{\text {VAx }}$	Tx Upconverter Supply. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
56	$V_{C C}$ PAD	PA Driver Supply. Connect to a regulated supply voltage. Bypass each supply pin to the PCB ground plane with a capacitor placed as close as possible to the pin. Do not share ground vias among multiple bypass capacitors.
-	EP	Exposed Pad. Connect to a large ground plane to maximize thermal performance.

Detailed Description

Quad RF Inputs

The MAX2550 features five independent RF inputs. RXIN1 and RXIN3 are used for receiving WCDMA Bands $\mathrm{I}, \mathrm{V}, \mathrm{VI}$, and VIII. Bands I, V, VI, and VIII WCDMA/PCS downlink can be monitored (network listen) by programming the part to receive through the RXIN4 and RXIN5 inputs. RXIN2 can be used to monitor Band III. This allows the base station to monitor surrounding cells to select the best operating conditions (transmit power, codes, frequency, capacity, etc.)

REFOUT Functionality

The MAX2550 features a reference oscillator buffered output that is configurable by the REFEN input and Register 29. REFOUT can be configured as CMOS or as a low-voltage output. Table 2 lists all REFOUT configurations.

Receiver System Gain Control

The device features programmable-gain LNAs and programmable variable-gain baseband amplifiers, allowing the system gain to be entirely controlled by the serial interface. RX1, RX2, RX3, and RX5 have three possible gain states: high gain, medium gain, and low gain. RX4
has high and low gain modes. The gain state of the LNA in operation is programmed by the LNAGAIN bits in the RX_GAIN[15:14] register. Each LNA requires an external matching network to optimize system sensitivity. Table 3 provides S11 for each LNA input over the specified band of operation, Table 4 provides S11 of RXIN1 and RXIN3 LNA output, and Table 5 provides S11 of the mixer input. The receiver also features a separate dedicated receive path for the 1930 MHz to 1995 MHz band that enables monitoring.
The baseband amplifiers has 16 possible gain states with each LSB providing a gain step of 3dB. The gain state of the baseband amplifiers is programmed by the PGAGAIN bits in the RX_GAIN[11:8] register. The dynamic range of the data converters when using the recommended sampling rates is sufficient to allow for minimal switching of system gain over varying input signal power. Tables 6 and 7 provide suggested LNA and PGA settings for various input signal power ranges. Two possible LNA/PGA gain settings are provided for the uplink band. Case 1 (Table 6) allows for 3GPP TS25.104 compliance under all conditions while case 2 (Table 7) allows best sensitivity, but compromises adjacent channel selectivity and intermodulation in high-gain LNA mode.

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 1. RF Input/Output Frequency Range

PIN	FUNCTION	FREQUENCY RANGE (MHz)
RXIN1	Band I WCDMA uplink Rx	1920 to 1980
RXIN2	Band III DCS monitor	1805 to 1880
RXIN3	Band V uplink WCDMA/GSM Band VI WCDMA uplink Band VIII uplink WCDMA	824 to 849
	Band V downlink WCDMA/GSM monitor Band VI WCDMA monitor Band VIII downlink WCDMA/GSM monitor	880 to 840
TXOUTL	Band I WCDMA monitor	865 to 894
	Band V WCDMA downlink Tx Band VI WCDMA downlink Tx Band VIII WCDMA downlink Tx	925 to 985
	Band I WCDMA downlink Tx	2110 to 2170

Table 2. REFOUT Output Configurations

INPUT			OUTPUT
REFEN INPUT	REFIN_ENOUT3 (TXLO_REF<14>)	REFOUT_LV_CMOS_SEL (TXLO_REF<23>)	OUTPUT TYPE
	0	X	Off
	1	0	CMOS
	X	1	Low voltage
1	X	X	CMOS

Table 3. Typical RXIN1 (High Gain) S11 Parameters ($\mathrm{V}_{\mathrm{CC}}^{-}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

FREQUENCY (MHz)	S11 REAL	S11 IMAGINARY
1880	34.3	-40.1
1885	34.4	-40.0
1890	34.6	-40.0
1895	34.7	-40.0
1900	34.8	-39.9
1905	34.9	-39.9
1910	35.0	-39.9
1915	35.1	-39.8
1920	35.3	-39.8
1925	35.4	-39.8
1930	35.5	-39.8
1935	35.6	-39.8
1940	35.7	-39.8
1945	35.8	-39.8
1950	35.9	-39.8

FREQUENCY (MHz)	S11 REAL	S11 IMAGINARY
1955	36.0	-39.8
1960	36.1	-39.8
1965	36.2	-39.8
1970	36.3	-39.8
1975	36.4	-39.9
1980	36.5	-39.9
1985	36.6	-39.9
1990	36.6	-39.9
1995	36.7	-40.0
2000	36.8	-40.0
2005	36.9	-40.0
2010	36.9	-40.1
2015	37.0	-40.1
2020	37.1	-40.2

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 4. Typical RXIN3 (High Gain) S11
Parameters ($\mathrm{VCC}_{-}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

FREQUENCY (MHz)	S11 REAL	S11 IMAGINARY
1765	23.4	-38.9
1770	23.5	-38.8
1775	23.7	-38.6
1780	23.8	-38.5
1785	23.9	-38.4
1790	24.1	-38.3
1795	24.2	-38.2
1800	24.3	-38.1
1805	24.4	-38.0
1810	24.6	-37.9
1815	24.7	-37.8
1820	24.8	-37.7
1825	24.9	-37.6
1830	25.0	-37.5
1835	25.1	-37.4
1840	25.2	-37.3
1845	25.3	-37.2
1850	25.4	-37.1
1855	25.5	-37.1
1860	25.6	-37.0
1865	25.7	-36.9
1870	25.8	-36.8
1875	25.9	-36.7
1880	26.0	-36.6
1885	26.1	-36.5
1890	26.1	-36.4
1895	26.2	-36.3
1900	26.3	-36.2
1905	26.4	-36.2
1910	26.5	-36.1
1915	26.6	-36.0
1920	26.6	-35.9

Table 5. Typical RXIN4 (High Gain) S11
Parameters ($\mathrm{VcC}_{-}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+\mathbf{2 5 ^ { \circ }} \mathrm{C}$)

FREQUENCY (MHz)	S11 REAL	S11 IMAGINARY
840	22.0	-53.8
845	22.5	-53.6
850	22.9	-53.4
855	23.3	-53.3
860	23.7	-53.2
865	24.1	-53.1
870	24.3	-53.0
875	24.6	-53.0
880	24.8	-52.9
885	24.9	-52.9
890	25.0	-52.8
895	25.1	-52.8
900	25.1	-52.7
905	25.3	-52.3
910	25.6	-52.2
915	25.9	-52.1
920	26.2	-52.0
925	26.4	-52.0
930	26.5	-51.9
935	26.6	-51.9
940	26.7	-51.8
945	26.8	-51.8
950	26.8	-51.7
955	26.8	-51.6
960	26.8	-51.5
965	26.7	-51.4
970	26.6	-51.2
975	26.5	-51.1
980	26.4	-50.9

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 6. Typical RXIN5 (High Gain) S11 Parameters ($\mathrm{V}_{\mathrm{CC}} \mathrm{C}_{-}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

FREQUENCY (MHz)	S11 REAL	S11 IMAGINARY
2070	16.9	-33.3
2075	16.9	-33.1
2080	17.0	-32.9
2085	17.0	-32.7
2090	17.0	-32.5
2095	17.1	-32.3
2100	17.1	-32.2
2105	17.1	-32.0
2110	17.2	-31.8
2115	17.2	-31.6
2120	17.3	-31.4
2125	17.3	-31.2
2130	17.3	-31.0
2135	17.4	-30.8
2140	17.4	-30.6
2145	17.5	-30.4

FREQUENCY (MHz)	S11 REAL	S11 IMAGINARY
2150	17.6	-30.2
2155	17.6	-30.0
2160	17.7	-29.8
2165	17.7	-29.6
2170	17.8	-29.5
2175	17.9	-29.3
2180	17.9	-29.1
2185	18.0	-28.9
2190	18.1	-28.7
2195	18.1	-28.5
2200	18.2	-28.3
2205	18.3	-28.2
2210	18.4	-28.0
2070	16.9	-33.3
2075	16.9	-33.1

Table 7. Typical LNAOUTH (High Gain) S11 Parameters ($\mathrm{V}_{\mathrm{CC}}^{-}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

FREQUENCY (MHz)	S11 REAL	S11 IMAGINARY
1880	28.2	-5.7
1885	28.5	-5.2
1890	28.8	-4.7
1895	29.1	-4.3
1900	29.4	-3.8
1905	29.7	-3.3
1910	30.0	-2.8
1915	30.3	-2.4
1920	30.6	-1.9
1925	31.0	-1.4
1930	31.3	-0.9
1935	31.6	-0.4
1940	31.9	0.0
1945	32.3	0.5
1950	32.6	1.0

FREQUENCY (MHz)	S11 REAL	S11 IMAGINARY
1955	33.0	1.5
1960	33.3	2.0
1965	33.7	2.5
1970	34.1	2.9
1975	34.4	3.4
1980	34.8	3.9
1985	35.2	4.4
1990	35.6	4.9
1995	36.0	5.4
2000	36.4	5.8
2005	36.8	6.3
2010	37.2	6.8
2015	37.6	7.3
2020	38.0	7.8

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Digital I/Q Receive Interface

The baseband output of the device is in the form of a digital I/Q interface. The received signals are sampled by a 1 -bit sigma-delta modulator clocked at 153.6 MHz for WCDMA and 26 MHz for GSMK. The digital bitstream out of the converter is transported from the device to the baseband processor by a low-voltage differential signaling (LVDS) interface. The output data is single-bit nonreturn-to-zero (NRZ). The device does not perform any encoding of the data and no clock is exchanged between the device and the baseband processor.
The device performs limited analog filtering only to minimize aliasing; all channel filtering is realized entirely in the digital domain. The digital filtering removes undesired signals as well as the inherent quantization noise of the sigma-delta modulator. In addition, the device's analog filters include a pole at approximately half the channel bandwdith that must be equalized by the digital filters.
The differential outputs require a termination resistor at the digital baseband IC inputs. The output current of the LVDS drivers are programmable by the LVDSI_2X bit in the BB_CLKOUT register to accommodate different termination resistors. Set LVDSI_2X = 1 to set the drive current to nominal for operation with 120Ω differential loads.

Digital I/Q Transmit Interface

The Tx baseband input of the device is in the form of a sigma-delta modulated digital I/Q interface. The digital bitstream of the baseband processor is transported to the device by a low-voltage differential signaling (LVDS) or DDR3 interface. The LVDS signal has a typical common-mode voltage of 1.2 V and a differential swing of 140 mV P-p, while DDR3 has a common-mode voltage of 0.75 V and differential of 600 mV P-p. For LVDS, the input data should be in single-bit NRZ format; no clock is exchanged between the baseband processor and the device. The device recovers the I/Q bitstreams with an on-chip data recovery circuit. The bitstream is converted to an analog signal and filtered prior to upconversion to an RF signal.

Baseband Input Level
The baseband input is in digital 1-bit sigma-delta converted format. There are internal 1-bit I/Q DACs that restore the level of the incoming digital signals to a repeatable analog level in the device. At a given TX_GAIN value, the RMS output power level depends on the density of the bit stream, not the voltage level of the LVDS digital signal. The density of the bit stream, in turn, depends on the input level of the sigma-delta converter, which resides in the baseband chip. The condition for the AC performance in the EC table calls for -4 dBFs peak, which means -4 dB relative to the full scale of the input of the sigma-delta converter. The sigma-delta converter, coded in Verilog, and implemented on FPGA has 10 bits (9 bits + sign) at the input. In this case, the full scale is ± 511, and -4 dBFs peak means ± 322 peak excursion. The RMS level is lower than this number, depending on the peakaverage ratio of the signal. For TM1, the peak-average is 10.6 dB at 0.01%, so the RMS level of the baseband signal is -14.6 dBFs , or ± 95.

DC Offset
While the inherent DC offset at the I/Q outputs is very low, it is expected that the baseband processor digitally removes any DC offset.

Digital Filters/Sigma Delta Modulator
Verilog code is available for implementation of the sigmadelta modulator and digital filters in the baseband processor. Contact the factory for more information.

Fractional-N Synthesizers
The device includes three fractional- N frequency synthesizers. One synthesizer is used to generate the receive RF local oscillator (LO), the second is used to generate the transmit RF local oscillator, while the third is used to generate the ADC sampling clock. The loop filter for the ADC sampling clock synthesizer is integrated on-chip. RF synthesizers require an external loop filter. All synthesizers have 20 bits of fractional resolution.

Figure 1. Digital Baseband Receiver Interface

Figure 2. Baseband Input Example

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

RF Synthesizers

For the receiver the RF LO frequency is programmed by the RXLO_FRAC [19:0] (Fractional) register and the RXLO_SYN[7:0] (Integer) register. The synthesizer frequency is demonstrated by the following example.
Assume:

$$
\begin{gathered}
f_{\text {REFIN }}=f_{C O M P A R I S O N}=19.2 \mathrm{MHz} \\
f_{\text {LO }}=f_{\text {REFIN }} \times\left(\text { RXLO_SYN }+\frac{\text { RXLO_FRAC }}{2^{20}}\right) \times K
\end{gathered}
$$

where:
$K=1$ if RXIN1, RXIN2, RXIN5
$K=0.5$ if RXIN3, RXIN4
For the transmitter the RF LO frequency is programmed by the TXLO_FRAC [19:0] (Fractional) register and the TXLO_SYN[7:0] (Integer) register. The synthesizer frequency is demonstrated by the following example.
Assume:

$$
\begin{gathered}
f_{\text {REFIN }}=f_{\text {COMPARISON }}=19.2 \mathrm{MHz} \\
f_{\text {LO }}=f_{\text {REFIN }} \times\left(T X L O _S Y N+\frac{T X L O _F R A C}{2^{20}}\right) \times \mathrm{K}
\end{gathered}
$$

where:
$K=0.5$ for TXOUTL
$K=1$ for TXOUTH
Calculate the required divider ratio by dividing the LO frequency by the reference frequency.

$$
\text { Divider }=\frac{f_{\text {LO }} \times 2}{f_{\text {COMPARISON }}}=\frac{1910 \mathrm{MHz}}{19.2 \mathrm{MHz}}=99.479166
$$

The integer-N divider is equal to the integer portion of the divider ratio, 99 in this example. Convert the integer-N decimal value to binary and program into the RXLO_SYN bits.

$$
\begin{aligned}
\text { Integer-N divider }=99 & =0 \times 63=01100011 \rightarrow \\
\text { RXLO_SYN } & =01100011
\end{aligned}
$$

The fractional- N divider is equal to the fractional portion of the divider ration, 0.479166 in this example. Convert the fractional portion of the divider to a 20-bit word by
multiplying by 220 and rounding to the nearest whole number. Then, convert the result to binary and program the bits into the RXLO_FRAC.

Fractional-N divider $=0.479166 \times 2^{20}=502442=$ $0 \times 7 A A A A \rightarrow$ RXLO_FRAC $=0 \times 7 A A A A$

ADC Clock Synthesizer

The sampling clock frequency is controlled by the CINT (BBCLK_SYN[7:0]) and CFRAC (BBCLK_FRAC[19:0]) registers. The sampling clock synthesizer does not need to be repeatedly programmed during normal operation. The sampling clock frequency (f ADCCLK) is 153.6 MHz in WCDMA mode and 26 MHz in GSM mode. The dynamic range of the converters with this sampling frequency is sufficient to meet all system specifications with very minimal control of the PGA.
Assume:

$$
f_{\text {REFIN }}=\mathrm{f}_{\mathrm{COMPARISON}}=19.2 \mathrm{MHz}
$$

ADC Clock Synthesizer Fractional Frequency Correction

The ADC clock synthesizer uses a 20-bit frequency synthesizer and can be enhanced by a fractional error correction. Parameters PBYQ_RATUP and PBYQ_RATDN implement the following function.

$$
\begin{gathered}
\mathrm{f}_{\text {ADCCLK }}=\mathrm{f}_{\text {REFIN }} \times\left(\mathrm{CINT}+\left(\mathrm{CFRAC}+\mathrm{PBYQ} \mathrm{_RATUP/}\right.\right. \\
\left.(\text { PBYQ_RATUP }+ \text { PBYQ_RATDN })) / 2^{20}\right) \times \mathrm{K} \\
\text { PBYQ_RATUP/(PBYQ_RATUP + PBYQ_RATDN })= \\
\left(\mathrm{f}_{\text {ADCCLK }} / \mathrm{f} \text { REFIN }-\mathrm{CINT}\right) \times 2^{20} \times \mathrm{K}-\mathrm{CFRAC}
\end{gathered}
$$

where:
$\mathrm{K}=8$ if WCDMA
$K=48$ if GSM/PCS/DCS
PBYQ_RATUP and PBYQ_RATDN should be chosen for the best fit.
This feature can be enabled or disabled through EN_ PBYQDIV (REG15<22>). Table 8 shows the PBYQ_ RATUP and PBYQ_RATDN with commonly used crystal oscillator frequencies.

Power-Down Modes
The device features multiple power-down modes that can be controlled by hardware or software. Table 9 describes the various power-down modes.

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 8. Typical LNAOUTL (High Gain) S11 Parameters ($\mathrm{VCC}_{-}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+\mathbf{2 5 ^ { \circ }} \mathrm{C}$)

FREQUENCY (MHz)	S11 REAL	S11 IMAGINARY
795	40.1	-4.0
800	40.8	-3.3
805	41.6	-2.6
810	42.3	-1.9
815	43.1	-1.2
820	43.9	-0.6
825	44.7	0.1
830	45.5	0.7
835	46.4	1.3
840	47.2	1.9
845	48.1	2.5
850	49.0	3.1
855	49.9	3.7
860	50.8	4.2
865	51.7	4.8

FREQUENCY (MHz)	S11 REAL	S11 IMAGINARY
870	52.7	5.3
875	53.6	5.8
880	54.6	6.3
885	55.6	6.7
890	56.6	7.2
895	57.6	7.6
900	58.6	8.0
905	59.7	8.4
910	60.7	8.8
915	61.8	9.1
920	62.9	9.4
925	64.0	9.7
930	65.1	10.0
935	66.3	10.2

Table 9. Typical MIXINH S11 Parameters ($\mathrm{VCC}_{-}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

FREQUENCY (MHz)	S11 REAL	S11 IMAGINARY
1880	28.55	-31.48
1885	28.77	-31.50
1890	28.98	-31.53
1895	29.19	-31.56
1900	29.39	-31.60
1905	29.59	-31.64
1910	29.79	-31.69
1915	29.98	-31.75
1920	30.16	-31.81
1925	30.34	-31.87
1930	30.52	-31.94
1935	30.69	-32.01
1940	30.85	-32.09
1945	31.01	-32.17
1950	31.16	-32.26

FREQUENCY (MHz)	REAL	IMAGINARY
1955	31.31	-32.35
1960	31.45	-32.44
1965	31.59	-32.54
1970	31.72	-32.64
1975	31.84	-32.74
1980	31.96	-32.85
1985	32.07	-32.95
1990	32.18	-33.06
1995	32.28	-33.18
2000	32.37	-33.29
2005	32.46	-33.41
2010	32.54	-33.52
2015	32.61	-33.64
2020	32.68	-33.76

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Carrier and Sideband Suppression Optimization

The device delivers a typical carrier suppression of -40 dBc and a sideband suppression of -45 dBc without any external calibration; however, if greater suppression is required, the device is capable of overriding the factory settings and accepting manual calibration from the baseband processor.

RF Band Configuration

The device has configurable VCO and LO generation to support Bands I, V, and VIII forward and reverse link operation. In transmit signal path, LC tank is also configurable to optimize performance in both bands. Table 10 shows the key difference in SPI settings.

General-Purpose Outputs
The device is equipped with three general-purpose outputs. GPO3 can also be configured as a PLL lock detect for the Rx, Tx, or Rx and Tx. See Table 20 for how to properly configure the general-purpose outputs.

Table 10. Typical MIXINL S11 Parameters ($\mathrm{V}_{\mathrm{CC}}^{-}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

FREQUENCY (MHz)	S11 REAL	S11 IMAGINARY
795	25.70	-43.40
800	26.10	-42.50
805	26.50	-41.60
810	27.00	-40.70
815	27.50	-39.80
820	28.00	-38.90
825	28.60	-38.00
830	29.20	-37.10
835	29.90	-36.30
840	30.60	-35.50
845	31.40	-34.70
850	32.20	-33.90
855	33.10	-33.10
860	33.97	-32.34
865	35.01	-31.60

FREQUENCY (MHz)	REAL	IMAGINARY
870	36.10	-30.90
875	37.22	-30.22
880	38.39	-29.58
885	39.60	-28.97
890	40.85	-28.41
895	42.14	-27.89
900	43.48	-27.42
905	44.85	-27.00
910	46.27	-26.64
915	47.73	-26.35
920	49.22	-26.11
925	50.75	-25.95
930	52.31	-25.87
935	53.91	-25.86

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Power-On Reset (POR)

Recommended defaults are not guaranteed upon powerup and are provided for reference only. All registers must be written with the proper values no earlier than 100 s after power-up. Figure 3 displays the time it takes for Tx/Rx PLL lock detect (GPO3) to become active after power-up and enabling the correct registers for proper operation. All reserved registers should only be written with default values.

Temperature Sensor
An on-chip temperature sensor is enabled by programming RX_ENABLE<14> = 1 . To trigger temperature sensor ADC reading, program RX _MISC2<6> from 0 to 1 . The ADC acquires the 5 -bit logic output in $2 \mu \mathrm{~s}$; the temperature sensor needs to be on (RX_ENABLE<14> = 1) to maintain the ADC logic output. To read the 5-bit logic output through the DOUT pin, apply 4 -wire SPI readout programming sequence to RX_MISC2<11:7>.

4-Wire Serial Interface

The device includes 32 programmable 26 -bit registers. The most significant bit (MSB) is the read/write selection bit (R/W in Figure 4). The next 5 bits are register address (A[4:0] in Figure 4). The 26 least significant bits (LSBs) are register data ($\mathrm{D}[25: 0]$ in Figure 4). Register data is loaded through the 4 -wire SPI/MICROWIRETM-compatible serial interface. MSB of data at the DIN pin is shifted in first and is framed by $\overline{\mathrm{CS}}$. When $\overline{\mathrm{CS}}$ is low, input data is shifted at the rising edge of the clock at the SCLK pin. At $\overline{\mathrm{CS}}$ rising edge, the 26 -bit data bits are latched into the register selected by the address bits. See Figure 4. There is no power-on SPI register self-reset functionality in the device; the user must program all register values after power-up. During the read mode, register data selected by address bits is shifted out to the DOUT pin at the falling edges of the clock.

Figure 3. POR PLL Lock-Detect Time
MICROWIRE is a trademark of National Semiconductor Corp.

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 11. Typical TXOUTL S11 Parameters ($\mathrm{V}_{\mathrm{CC}}^{-}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

FREQUENCY (MHz)	REAL	IMAGINARY
700.0	25.5	63.9
750.0	52.3	76.8
800.0	103.7	59.2
850.0	107.4	-9.9
900.0	64.8	-32.6
950.0	39.6	-27.2
1000.0	27.2	-18.9
1050.0	20.7	-11.8
1100.0	16.9	-6.1
1150.0	14.5	-1.3
1200.0	12.9	2.7
1250.0	11.8	6.3
1300.0	11.1	9.4
1350.0	10.5	12.3
1400.0	10.1	15.0
1450.0	9.9	17.6

FREQUENCY (MHz)	REAL	IMAGINARY
1500.0	9.7	20.1
1550.0	9.6	22.5
1600.0	9.6	24.8
1650.0	9.6	27.1
1700.0	9.7	29.4
1750.0	9.8	31.6
1800.0	10.0	33.9
1850.0	10.2	36.2
1900.0	10.4	38.6
1950.0	10.7	41.0
2000.0	11.0	43.5
2050.0	11.3	46.0
2100.0	11.7	48.6
2150.0	12.2	51.4
2200.0	12.7	54.2

Table 12. Typical TXOUTH S11 Parameters ($\mathrm{V}_{\mathrm{CC}}^{-}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

FREQUENCY (MHz)	REAL	IMAGINARY
700.0	3.7	21.9
750.0	3.9	23.9
800.0	4.2	26.0
850.0	4.5	28.2
900.0	4.8	30.5
950.0	5.2	33.1
1000.0	5.8	35.8
1050.0	6.4	38.9
1100.0	7.2	42.2
1150.0	8.3	45.8
1200.0	9.7	50.0
1250.0	11.5	54.6
1300.0	14.0	60.0
1350.0	17.5	66.1
1400.0	22.5	73.2
1450.0	29.9	81.2

FREQUENCY (MHz)	REAL	IMAGINARY
1500.0	41.1	89.9
1550.0	58.2	98.0
1600.0	83.9	101.3
1650.0	117.3	91.2
1700.0	146.2	58.0
1750.0	149.1	10.8
1800.0	126.3	-24.1
1850.0	97.4	-38.3
1900.0	74.0	-39.5
1950.0	57.4	-35.4
2000.0	45.8	-29.5
2050.0	37.8	-23.5
2100.0	32.0	-17.8
2150.0	27.8	-12.6
2200.0	24.7	-7.8

MAX2550

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 13. PBYQ_RATUP and PBYQ_RATDN Commonly Used Crystal Oscillator Frequencies

STANDARD	$\mathrm{f}_{\text {REFIN }}$ (MHz)	CINT REG15 <7:0>	$\begin{gathered} \text { CFRAC } \\ \text { REG1 } \\ <19: 0> \end{gathered}$	$\begin{gathered} \text { PBYQ_RATUP } \\ \text { REG16 } \\ \text { <7:0> } \end{gathered}$	PBYQ_RATDN REG16 <15:8>	CINT REG15 <7:0>	$\begin{aligned} & \text { CFRAC } \\ & \text { REG14 } \\ & <19: 0> \end{aligned}$	PBYQ_RATUP REG16<7:0>	PBYQ_RATDN REG16<15:8>
	Reference Frequency	Integer Divide Ratio (dec)	Fractional Divide Ratio (dec)	Fractional LSB Dither Up (dec)	Fractional LSB Dither Down (dec)	Integer Divide Ratio (hex)	Fractional Divide Ratio (hex)	Fractional LSB Dither Up (hex)	Fractional LSB Dither Down (hex)
WCDMA	13	94	548485	59	6	5E	85E85	3B	6
	15.36	80	0	0	0	50	0	0	0
	19.2	64	0	0	0	40	0	0	0
	20	61	461373	11	14	3D	70A3D	B	E
	26	47	274242	62	3	2 F	42F42	3E	3
GSM	13	96	0	0	0	60	0	0	0
	15.36	81	262144	0	0	51	40000	0	0
	19.2	65	0	0	0	41	0	0	0
	20	62	419430	2	3	3E	66666	2	3
	26	48	0	0	0	30	0	0	0

Table 14. Power-Down Modes

OPERATING MODE	$\begin{aligned} & \text { REFEN PIN, } \\ & \text { REG29<14:12> } \end{aligned}$	$\begin{gathered} \text { BLOCKS } \\ \text { ENABLE } \\ \text { REG00<18:0> } \end{gathered}$	$\begin{gathered} \text { BIAS } \\ \text { ENABLE } \\ \text { REG20<24> } \end{gathered}$	$\begin{gathered} \text { AFCDAC } \\ \text { ENABLE } \\ \text { REG30<19> } \end{gathered}$	$\begin{aligned} & \text { CDR DIVIDER } \\ & \text { ENABLE } \\ & \text { REG16<20> } \end{aligned}$	CDR ENABLE REG24<18>
Sleep	0000	00000	0	0	0	0
AFC Only	0000	00000	0	1	0	0
Reference Buffer Only	1 xxx or 0100	00000	0	1	0	0
Idle RX	1xxx or 0x11	00840	1	1	0	0
Idle TX	1 xxx or 0x11	01000	1	1	1	1
RXIN1/TXOUTH Full Duplex	1 xxx or 0x11	79BFF	1	1	1	1
RXIN1 Only	1 xxx or 0x11	009FF	1	1	0	0
RXIN3/TXOUTL Full Duplex	1 xxx or 0x11	79BFF	1	1	1	1
RXIN3 Only	1 xxx or 0x11	009FF	1	1	0	0
RXIN4 Monitor	1 xxx or 0x11	009FF	1	1	0	0
RXIN5 Monitor	1 xxx or 0x11	009FF	1	1	0	0
TXOUTL Only	1 xxx or 0x11	79240	1	1	1	1
TXOUTH Only	1 xxx or 0x11	79240	1	1	1	1
RXIN2	1 xx or 0×11	009FF	1	1	0	0

MAX2550

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 15. RF Band Configuration

INPUT PIN	RF RANGE (MHz)	VCO SELECT REG03<20:19>	VCO ROH BAND REG03<22:21>	VCO DIVIDER REG03<18:17>	LNA/MIXER SELECT REG01<5:0>	RXIN4_HB REG06<16>
RXIN1	1920 to 1980	10	01	10	18	X
RXIN3 (Band V)	820 to 849	01	XX	01	01	X
RXIN3 (Band VIII)	880 to 915	10	11	01	01	X
RXIN4 (Band V)	865 to 894	01	00	01	15	0
RXIN4 (Band VIII)	925 to 960	10	01	01	15	1
RXIN5	2110 to 2170	10	00	10	$2 A$	X
RXIN2	1805 to 1880	10	11	10	$0 C$	X

OUTPUT PIN	RF RANGE (MHz)	$\begin{gathered} \text { VCO } \\ \text { SELECT } \\ \text { REG28 } \\ <15: 14> \end{gathered}$	$\begin{gathered} \text { VCO ROH } \\ \text { BAND } \\ \text { REG28 } \\ <17: 16> \end{gathered}$	$\begin{gathered} \text { VCO } \\ \text { DIVIDER } \\ \text { REG28 } \\ <13: 12> \end{gathered}$	PAD BAND REG19 <1:0>	PAD CTUNE REG19 <6:2>	$\begin{gathered} \text { TXLO_- } \\ \text { IQ_GAIN } \\ \text { REG20 } \\ \text { <19> } \end{gathered}$	$\begin{gathered} \text { UCX- } \\ \text { CSW } \\ \text { REG21 } \\ <5: 2> \end{gathered}$	$\begin{gathered} \text { T_UCX } \\ \text { RSW } \\ \text { REG22 } \\ <20: 17> \end{gathered}$	$\begin{gathered} \text { T_UCX_- } \\ \text { BAND_SEL } \\ \text { REG22 } \\ <23: 22> \end{gathered}$
TX_OUTL (Band VIII)	925 to 960	10	01	01	00	00100	1	1011	XXXX	01
TX_OUTL (Band V)	865 to 894	01	00	01	00	00100	1	1101	XXXX	01
TX_OUTH	$\begin{gathered} 2110 \text { to } \\ 2170 \end{gathered}$	11	00	10	11	00000	0	0000	0101	11

MAX2550
Band I, V, and VIII WCDMA Femtocell
Transceiver with GSM Monitoring

Figure 4. SPI Timing

Table 16. SPI Serial Interface Timing

SPEC NO.	PARAMETER	SYMBOL	TYP	UNITS
SPI1	SCLK Rising Edge to $\overline{\mathrm{CS}}$ Falling Edge Wait Time	$\mathrm{t}_{\mathrm{CSO}}$	6	ns
SPI2	Falling Edge of $\overline{\mathrm{CS}}$ to Rising Edge of First SCLK Time	$\mathrm{t}_{\mathrm{CSS}}$	6	ns
SPI3	DIN to SCLK Setup Time	t_{DS}	6	ns
SPI4	DIN to SCLK Hold Time	t_{DH}	6	ns
SPI5	SCLK Pulse-Width High	t_{CH}	6	ns
SPI6	SCLK Pulse-Width Low	t_{CL}	6	ns
SPI7	Last Rising Edge of SCLK to Rising Edge of $\overline{\mathrm{CS}}$	$\mathrm{t}_{\mathrm{CSH}}$	6	ns
SPI8	$\overline{\mathrm{CS}}$ High Pulse Width	$\mathrm{t}_{\mathrm{CSW}}$	50	ns
SPI9	Time Between Rising Edge of $\overline{\mathrm{CS}}$ and the Next Rising Edge of SCLK	$\mathrm{t}_{\mathrm{CS} 1}$	6	ns
SPI10	SCLK Frequency	$\mathrm{f}_{\mathrm{CLK}}$	40	MHz
SPI11	Rise Time	t_{R}	2.5	ns
SPI12	Fall Time	t_{F}	2.5	ns
SPI13	SCLK Falling Edge to Valid DOUT	t_{D}	12.5	ns

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Register and Bit Descriptions (If Applicable)

The operating mode of the device is completely controlled by 32 on-chip registers.

Recommended defaults are not guaranteed upon powerup and are provided for reference only. All registers must be written with the proper values no earlier than 10 $\mu \mathrm{s}$ after power-up (once $\mathrm{V}_{\mathrm{CC}_{-}}$is 90% of final value). All reserved registers should only be written with default values.

Table 17. Brief Register Map

REGISTER NO.	REGISTER NAME	ADDRESS	FUNCTION
0	RX_ENABLE	00000	Enable bits for various internal functions
1	RX_GAIN	00001	Gain control of LNA and PGA
2	Reserved	00010	-
3	RX_LNA	00011	LNA bias, Rx synthesizer configuration
4	Reserved	00100	-
5	Reserved	00101	-
6	RX_LPF	00110	RXLPF configuration
7	GPO_CONFIG	00111	Configuration of GPOs
8	Reserved	01000	-
9	Reserved	01001	-
10	RXLO_FRAC	01010	Receive synthesizer fractional division ratio
11	RXLO_SYN	01011	Configuration of Rx synthesizer
12	BBCLK_OUT	01100	ADC configuration
13	Reserved	01101	-
14	BBCLK_FRAC	01110	ADC clock generator fractional division ratio
15	BBCLK_SYN	01111	Configuration of clock generator synthesizer
16	BBCLK_MISC	10000	Dithering clock generator synthesizer
17	BBCLK_SPARE	10001	Miscellaneous setting for clock generator
18	TX_LPF	10010	LPF settings for Tx path
19	TX_PAD	10011	PA driver settings
20	TX_UPX1	10100	Tx upconverter bias
21	TX_UPX2	10101	Tx upconverter bias adjustment and V2I attenuation
22	TX_UPX3	10110	Tx upconverter DC offset adjustment
23	TX_GAIN1	10111	Tx path gain setting
24	TX_GAIN2	11000	Tx path gain curve adjustment
25	Reserved	11001	-
26	Reserved	11010	-
27	TXLO_FRAC	11011	Transmit synthesizer fractional division ratio
28	TXLO_SYN	11100	Configuration of Tx synthesizer
29	TXLO_REF	11101	Configuring REFOUT and REFIN
30	TXLO_AFCDAC	11110	AFC DAC word
31	Reserved	11111	-

Band I，V，and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 18．RX＿ENABLE Register 0 （Address＝00000）

$\stackrel{\text { 上 }}{\text { ¢ }}$	$\frac{\text { 은 }}{\frac{1}{\mathrm{~L}}}$	$\sum_{\mathbb{Z}}^{\omega}$		$\frac{\leftarrow}{\bar{\omega}}$																$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & 0 \\ & \text { U } \\ & \text { 《 } \end{aligned}$		$\begin{aligned} & \text { 邑 } \\ & \text { ๗ } \end{aligned}$
0	$\underset{\vdots}{\underset{\Sigma}{\gtrless}}$	$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{0} \\ & \stackrel{\rightharpoonup}{\Psi} \\ & \vdots \\ & \vdots \end{aligned}$		0	1	1	1	1	1	1	1	0	0	0	1	1	1	0	0	0	0	0
1	$\begin{aligned} & \underset{\substack{u \\ \underset{\sim}{r} \\ \underset{\sim}{x} \\ \underset{㐅}{x}}}{ } \end{aligned}$			0	1	1	1	1	1	1	1	0	0	0	1	1	1	0	0	0	0	0
2	$\begin{aligned} & \underset{\sim}{\underset{\sim}{u}} \\ & \stackrel{y}{\mid} \\ & \stackrel{\rightharpoonup}{\wedge} \end{aligned}$			0	1	1	1	1	1	1	1	0	0	0	1	1	1	0	0	0	0	0
3	$\begin{aligned} & z \\ & \underset{U}{0} \\ & \underset{\sim}{0} \\ & 0 \end{aligned}$			0	1	1	1	1	1	1	1	0	0	0	1	1	1	0	0	0	0	0
4				0	1	1	1	1	1	1	1	0	0	0	1	1	1	0	0	0	0	0
5	$\begin{aligned} & \text { Z } \\ & \text { U } \\ & \text { 旻 } \end{aligned}$			0	1	1	1	1	1	1	1	0	0	0	1	1	1	0	0	0	0	0
6	$\begin{aligned} & \underset{u}{z} \\ & \underset{y}{u} \\ & 0 \\ & \underset{\sim}{8} \end{aligned}$			0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
7	$\begin{aligned} & 0 \\ & 0 \\ & \square \end{aligned}$			0	1	1	1	1	1	1	1	0	0	0	1	1	1	0	0	0	0	0
8	$\begin{aligned} & \bar{\infty} \\ & \stackrel{\ominus}{3} \end{aligned}$			0	1	1	1	1	1	1	1	0	0	0	1	1	1	0	0	0	0	0
9	$\begin{aligned} & \text { z } \\ & \text { U } \\ & \text { ত } \\ & \gtrless \end{aligned}$			0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0

Band I，V，and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 18．RX＿ENABLE Register 0 （Address＝00000）（continued）

$\frac{\ddots}{\bar{\omega}}$		$\sum_{\mathbb{Z}}^{\omega}$		$\stackrel{\vdash}{\mathbf{\omega}}$																$\begin{aligned} & \grave{y} \\ & \text { Z } \\ & 0 \\ & \text { U } \\ & \text { U } \end{aligned}$		$\begin{aligned} & \text { 邑 } \\ & \text { ש } \end{aligned}$
10		$\begin{aligned} & \underset{\sim}{0} \\ & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\otimes}{0} \\ & \underset{\sim}{0} \end{aligned}$	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	$\underset{\substack{\underset{\sim}{x} \\ \underset{\sim}{㐅} \\ \underset{\sim}{z}}}{\substack{n}}$			0	1	1	1	1	1	1	1	0	0	0	1	1	1	1	1	0	0	0
12	$\underset{\substack{\underset{\sim}{\gtrless} \\ \underset{\gtrless}{\gtrless}}}{\substack{\text { n }}}$			0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0
13	$\begin{aligned} & \underset{山 己}{z} \\ & \stackrel{\rightharpoonup}{\underset{\sim}{0}} \end{aligned}$			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	$\underset{\underset{\sim}{\sim}}{\underset{\sim}{Z}}$			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15				0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0
16				0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0
17	$\begin{aligned} & \underset{\mathrm{U}}{2} \\ & \stackrel{\rightharpoonup}{\searrow} \\ & \underset{\gtrless}{2} \end{aligned}$			0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0
18	z U ¢ \vdots			0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0

MAX2550

Band I，V，and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 18．RX＿ENABLE Register 0 （Address $=\mathbf{0 0 0 0 0}$ ）（continued）

$\frac{\llcorner }{\bar{\infty}}$	$\frac{\underline{0}}{\frac{1}{\mathbf{n}}}$	$\sum_{\mathbb{Z}}^{\omega}$		$\frac{\mathfrak{r}}{\overline{\mathbf{m}}}$																$\begin{aligned} & \searrow \\ & \vdots \\ & 0 \\ & 0 \\ & \text { U } \\ & 4 \end{aligned}$		$\begin{aligned} & \text { 邑 } \\ & \text { 山゙ } \end{aligned}$
19				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25				6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Band I，V，and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 19．RX＿GAIN Register 1 （Address＝00001）

$\frac{\ddots}{\bar{\omega}}$	$\frac{\text { 믄 }}{\frac{1}{\infty}}$	\sum_{i}^{ω}		$\frac{\mathrm{r}}{\mathbf{m}}$		$\begin{aligned} & \searrow \\ & \text { Z } \\ & \text { O } \\ & \text { N } \\ & \text { © } \\ & 0 \end{aligned}$														$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & 0 \\ & 0 \\ & \text { U } \end{aligned}$		$\begin{aligned} & \text { 邑 } \\ & \text { ๗u } \end{aligned}$
0			$\Sigma \underset{z}{\approx} \underset{z}{n}$	0	0	0	1	1	1	1	0	0	1	1	0	1	1	0	0	0	0	0
1		$\sum_{\Delta}^{\mathbb{Z}}$		1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
2				2	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
3				0	1	1	0	0	0	0	1	1	0	0	1	0	0	1	1	1	1	1
4		$\begin{aligned} & \pm \\ & \frac{\ddot{W}}{\mathbb{N}} \\ & \hline \end{aligned}$		0	1	0	0	0	1	1	0	1	0	0	1	0	0	1	1	1	1	1
5	$\Sigma \mathrm{V}$	$\underset{\substack{\times \\ \stackrel{亠 凶}{x} \\ \stackrel{x}{x}}}{ }$		1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
6	סOD	$\stackrel{\square}{0}$		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7		$\begin{gathered} \dot{8} \\ \underset{\sim}{8} \end{gathered}$		1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8				0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0
9	$\underset{<}{\underset{<}{z}} \wedge$			1	1	0	1	1	1	1	1	0	0	0	1	1	1	1	1	0	0	0
10		ভ		2	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	0	0	0
11				3	0	1	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 19. RX_GAIN Register 1 (Address = 00001) (continued)

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 20. Reserved Register 2 (Address = 00010)

Table 21．RX＿LNA Register 3 （Address＝00011）

$\frac{\mathrm{r}}{\overline{\mathrm{~m}}}$	$\frac{ㅁ ㅡ ㄴ ~}{\frac{1}{\mathbf{m}}}$	$\sum_{\mathbb{Z}}^{\mathrm{L}}$		$\frac{\llcorner }{\bar{m}}$																$\begin{aligned} & \grave{Z} \\ & \text { Z } \\ & 0 \\ & 0 \\ & \text { U } \end{aligned}$	$\begin{array}{\|l} \underset{\sim}{u} \\ \underset{\sim}{u} \end{array}$	$\begin{aligned} & \text { 䓃 } \\ & \text { ๗ } \end{aligned}$
0			1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3				3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
6				6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7				7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
8				8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
9				9	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10				10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12			｜	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14				3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
15				4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
16				5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 21. RX_LNA Register 3 (Address = 00011) (continued)

$\stackrel{\text { b }}{\text { ¢ }}$	$\frac{ㅁ ㅡ ㄴ ~}{\frac{1}{\mathbf{m}}}$	$\sum_{\mathbb{Z}}^{\omega}$		$\frac{\stackrel{⿺}{\bar{\omega}}}{}$																	$\begin{array}{\|l} \underset{\sim}{u} \\ \underset{\sim}{u} \end{array}$	$\begin{aligned} & \text { 邑 } \\ & \text { ๗ } \end{aligned}$
17				6	0	0	1	1	1	1	0	0	1	1	0	1	1	0	0	0	0	0
18				7	1	1	0	0	0	0	1	1	0	0	1	0	0	1	1	1	1	1
19				8	0	0	1	0	1	0	1	0	1	0	0	1	0	0	0	0	0	0
20				9	1	1	0	1	0	1	1	1	0	1	1	0	1	1	1	1	1	1
21				10	0	1	1	1	0	1	0	0	0	1	0	1	1	0	0	0	0	0
22				0	0	1	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0
23	$\begin{aligned} & \text { D} \\ & \stackrel{D}{D} \\ & \underset{\sim}{0} \\ & \underset{\sim}{0} \end{aligned}$			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
24				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 22. Reserved Register 4 (Address = 00100)

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 23. Reserved Register 5 (Address = 00101)

$\frac{\mathrm{t}}{\mathbf{m}}$	$\begin{aligned} & \underline{ㅁ} \\ & \frac{1}{\mathbf{m}} \end{aligned}$	$\sum_{\mathbb{Z}}^{\underset{Z}{\omega}}$	$\begin{aligned} & \text { Z } \\ & \text { 을 } \\ & \underline{Z} \\ & \text { 플 } \end{aligned}$	$\frac{\mathrm{t}}{\overline{\mathrm{~m}}}$																$\begin{aligned} & \grave{y} \\ & \text { Z } \\ & 0 \\ & \text { U } \\ & \text { u } \end{aligned}$		$\begin{aligned} & \text { 䓃 } \\ & \text { ๗ } \end{aligned}$
0	$\underset{\sim}{0}$$\underset{\sim}{0}0\underset{\sim}{\otimes}$			0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2				2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3				3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6				6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
7				7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
8				8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9				9	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10				10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11				11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12				12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13				13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14				14	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
15				15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16				16	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
17				17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18				18	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
19				19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20				20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21				21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22				22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23				23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24				24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25				25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 24. RX_LPF Register 6 (Address = 00110)

$\stackrel{\ddots}{\bar{\omega}}$	$\begin{aligned} & \underline{O} \\ & \frac{\stackrel{r}{\mathbf{n}}}{} \end{aligned}$	$\sum_{\mathbb{Z}}^{\omega}$	$\begin{aligned} & \text { Z } \\ & \text { O } \\ & \frac{1}{Z} \\ & \underline{Z} \\ & \text { U1 } \end{aligned}$	$\frac{\ddots}{\omega}$																		$\begin{aligned} & \text { 䓃 } \\ & \text { ๗ } \end{aligned}$	
0			1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4				4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
6				6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
7				7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
8				8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
9				9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
10				10	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
11				11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
12				12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
13				13	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
14				14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
15				15	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
16				16	0	0	0	1	0	1	0	0	0	1	0	0	1	0	0	0	0	0	
17				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
18		$\begin{aligned} & \underset{\sim}{0} \\ & \underset{\sim}{0} \\ & \mathbb{0} \\ & \underset{\sim}{0} \end{aligned}$	\\|	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
19				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
20				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
21				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
22				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
23				0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
24				1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
25				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

MAX2550
 Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 25. GPO_CONFIG Register 7 (Address = 00111)

$\frac{\llcorner }{\omega}$	$\begin{aligned} & \text { 은 } \\ & \frac{\operatorname{r}}{\mathbf{n}} \end{aligned}$	$\sum_{\mathbb{Z}}^{\mathrm{E}}$		$\frac{\mathrm{t}}{\mathrm{o}}$																$\begin{aligned} & \searrow \\ & \text { Z } \\ & \text { O } \\ & 0 \\ & \text { U } \end{aligned}$		$\begin{aligned} & \text { 䓃 } \\ & \text { ๗ } \end{aligned}$
0	$\underset{\sim}{0}$ $\underset{0}{0}$ 0 $\underset{\sim}{0}$	$\begin{aligned} & \hline \underset{\sim}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & \mathbb{O} \\ & \hline \end{aligned}$	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	$\frac{\hat{C}}{\stackrel{1}{v}}$			0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	$\begin{aligned} & \text { N } \\ & \text { O } \end{aligned}$			1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	$\frac{\hat{C}}{\stackrel{-}{v}}$	$\begin{aligned} & \overleftarrow{U} \\ & \frac{\mathbb{D}}{\mathbb{D}} \\ & \underset{J}{J} \end{aligned}$			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5	$\begin{aligned} & \text { §ં } \\ & \text { 0 } \end{aligned}$	$\begin{aligned} & \text { 今̈ } \\ & \text { O} \\ & \text { O} \\ & \text { Ò } \end{aligned}$		1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	$\begin{aligned} & \frac{\mathbb{O}}{\mathscr{Y}} \\ & \leftrightarrows \\ & \curvearrowleft \end{aligned}$			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Band I，V，and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 25．GPO＿CONFIG Register 7 （Address＝00111）（continued）

$\frac{\llcorner }{\bar{\omega}}$	$\frac{ㅁ ㅡ ㄴ ~}{\frac{1}{\infty}}$	\sum_{Σ}^{ω}		$\frac{\stackrel{⿺}{\bar{\omega}}}{}$																خ Z 0 0 U U	$\begin{array}{\|l} \underset{\sim}{u} \\ \hline \end{array}$	$\begin{aligned} & \text { 邑 } \\ & \text { 山 } \\ & \hline \end{aligned}$
7				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12		$\begin{aligned} & \underset{\sim}{0} \\ & \underset{\sim}{0} \\ & \mathbb{0} \\ & \underset{\sim}{0} \end{aligned}$	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14				2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
15				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16				4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
17				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	$\begin{aligned} & \hline \underset{\sim}{\otimes} \\ & \underset{\sim}{\otimes} \\ & \underset{\sim}{\otimes} \\ & \underset{\sim}{\otimes} \end{aligned}$	DD©©区		0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
19				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
20				0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
21				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
22	$\begin{aligned} & \underset{\sim}{0} \\ & \underset{\sim}{0} \\ & 0 \\ & \underset{\sim}{0} \end{aligned}$		｜	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Band I，V，and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 26．Reserved Register 8 （Address＝01000）

$\stackrel{\leftarrow}{\bar{m}}$	$\begin{aligned} & \text { 은 } \\ & \frac{t}{\mathbf{n}} \end{aligned}$	$\sum_{\mathbb{Z}}^{\mathrm{L}}$		$\frac{\ddots}{\bar{\omega}}$																$\begin{aligned} & \text { Z } \\ & \text { Z } \\ & \text { O } \\ & \text { U } \end{aligned}$		$\begin{aligned} & \text { 邑 } \\ & \text { 山己 } \end{aligned}$
0	$\underset{\sim}{0}$$\underset{\sim}{0}0\underset{\sim}{0}$		\|	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6				6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7				7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8				8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9				9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10				10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11				11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12				12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13				13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14				14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15				15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16				16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17				17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18				18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19				19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20				20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21				21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22				22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23				23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24				24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25				25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Band I，V，and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 27．Reserved Register 9 （Address＝01001）

$\frac{\ddots}{\bar{\omega}}$	$\begin{aligned} & \text { 은 } \\ & \frac{t}{\mathbf{n}} \end{aligned}$	$\sum_{\mathbb{Z}}^{\omega}$		$\stackrel{\digamma}{\bar{\omega}}$																$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & 0 \\ & \text { U } \\ & \text { K } \end{aligned}$		$\begin{aligned} & \text { 邑 } \\ & \text { 山゙心 } \end{aligned}$
0	$\begin{aligned} & \underset{\sim}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \mathbb{O} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\otimes} \\ & \stackrel{\rightharpoonup}{0} \\ & \underset{\mathbb{O}}{\underset{\sim}{\otimes}} \end{aligned}$		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6				6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7				7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8				8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9				9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10				10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11				11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12				12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13				13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14				14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15				15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16				16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17				17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18				18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19				19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20				20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21				21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22				22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23				23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24				24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25				25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 28. RXLO_FRAC Register 10 (Address = 01010)

$\stackrel{\ddots}{\bar{\omega}}$	$\begin{aligned} & \text { 믕 } \\ & \frac{1}{\circ} \end{aligned}$	$\sum_{\mathbb{Z}}^{\omega}$		$\frac{\vdash}{\bar{\omega}}$																Z Z 0 0 U U		$\begin{aligned} & \text { 邑 } \\ & \text { שי゙ } \end{aligned}$
0				0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
1				1	0	1	1	1	1	1	0	0	1	1	0	1	1	0	0	0	0	0
2				2	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
3				3	0	1	1	1	1	1	0	0	1	1	0	1	1	0	0	0	0	0
4				4	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
5				5	0	1	1	1	1	1	0	0	1	1	0	1	1	0	0	0	0	0
6				6	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
7				7	0	1	1	1	1	1	0	0	1	1	0	1	1	0	0	0	0	0
8				8	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
9				9	0	1	1	1	1	1	0	0	1	1	0	1	1	0	0	0	0	0
10				10	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
11				11	0	1	1	1	1	1	0	0	1	1	0	1	1	0	0	0	0	0
12				12	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
13				13	0	1	1	1	1	1	0	0	1	1	0	1	1	0	0	0	0	0
14				14	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
15				15	0	0	1	1	1	1	0	0	1	1	0	1	1	0	0	0	0	0
16				16	1	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1
17				17	0	1	1	1	1	1	1	0	1	1	0	1	1	0	0	0	0	0
18				18	0	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	0	0
19				19	1	1	1	0	1	1	0	1	1	0	1	1	0	1	1	1	1	1
20	$\underset{\sim}{0}$$\underset{0}{0}0\mathbb{O}$$\underset{\sim}{0}$	\|		0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
21				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25				5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 29. RXLO_SYN Register 11 (Address = 01011)

$\frac{\mathrm{r}}{\overline{\mathrm{~m}}}$	$\frac{\underline{O}}{\frac{1}{\mathbf{m}}}$	$\sum_{\mathbb{Z}}^{\omega}$		$\stackrel{\ddots}{\bar{n}}$																خ Z O U U	$\begin{array}{\|l} \underset{\sim}{u} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \end{array}$	$\begin{aligned} & \text { 邑 } \\ & \text { ๗ } \end{aligned}$
0			$\begin{aligned} & \text { See the RF Synthesizers } \\ & \text { section } \end{aligned}$	0	1	1	0	1	1	1	1	1	0	1	1	0	1	1	1	1	1	1
1				0	0	1	1	0	1	0	1	0	1	0	0	1	0	0	0	0	0	0
2				0	1	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1
3				0	0	1	0	1	1	0	1	0	0	1	0	0	1	0	0	0	0	0
4				0	0	1	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	0
5				0	1	0	0	0	0	1	1	1	0	0	1	0	0	1	1	1	1	1
6				0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
7				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	$\begin{aligned} & \underset{\sim}{\underset{\sim}{x}} \\ & \underset{\sim}{\alpha} \end{aligned}$			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	$\begin{aligned} & 0 \\ & 0 \\ & D_{0}^{0} \\ & 0 \\ & 0 \\ & \mathbb{X} \end{aligned}$		\|	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10				0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
11				0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
12				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	$\begin{aligned} & \hat{o} \\ & \dot{\text { i }} \\ & \frac{v}{n} \\ & \underset{\sim}{u} \end{aligned}$			0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
19				0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
20				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21	$\begin{aligned} & \underset{\sim}{0} \\ & \underset{\sim}{0} \\ & \mathbb{O} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \underset{\sim}{0} \\ & \underset{\sim}{\otimes} \\ & \mathbb{Q} \\ & \underset{\sim}{0} \end{aligned}$	\|	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23				4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
24				5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
25				6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MAX2550

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 30. BBCLK_OUT Register 12 (Address = 01100)

$\stackrel{\leftarrow}{\square}$	$\frac{ㅁ ㅡ ㄴ ~}{\bar{m}}$	$\sum_{\mathbb{Z}}^{\omega}$		$\frac{\ddots}{\bar{\omega}}$																$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & 0 \\ & 0 \\ & \text { U } \end{aligned}$	$\begin{array}{\|l} \underset{\sim}{\underset{\sim}{u}} \\ \underset{\sim}{\underset{\sim}{u}} \\ \underset{\sim}{\underset{\sim}{u}} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \\ \hline \end{array}$	$\begin{aligned} & \text { 㒴 } \\ & \text { ๗ } \end{aligned}$
0				0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	$\begin{aligned} & 0 \\ & \underset{\sim}{D} \\ & \underset{\sim}{0} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \underset{\sim}{0} \\ & \underset{\sim}{0} \\ & \underset{\sim}{0} \end{aligned}$	\|	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
4				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	$\begin{aligned} & \times \\ & \stackrel{\times}{N} \\ & \stackrel{-}{\square} \end{aligned}$			0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10			I	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
11				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
12				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16				6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17				7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18				8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19				9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20				10	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
21				11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22				12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23				13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24				14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25				15	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 31. Reserved Register 13 (Address = 01101)

$\frac{\vdash}{\bar{\omega}}$	$\begin{aligned} & \text { 으 } \\ & \frac{\operatorname{t}}{\mathbf{n}} \end{aligned}$	$\sum_{\mathbb{Z}}^{\omega}$		$\frac{\mathrm{r}}{\overline{\mathrm{~m}}}$																Z Z 0 O U U		$\begin{aligned} & \text { 邑 } \\ & \text { ๗ } \end{aligned}$
0	$\begin{aligned} & 0 \\ & 0 \\ & \stackrel{D}{0} \\ & 0 \\ & 0 \\ & \widetilde{\sim} \end{aligned}$		\|	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2				0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5				3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
6				0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
7				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11				5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
12				0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
13				0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
14				0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
15				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
16				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17				0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
18				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
19				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Band I，V，and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 32．BBCLK＿FRAC Register 14 （Address＝01110）

$\stackrel{\vdash}{\bar{\omega}}$		$\sum_{\mathbb{Z}}^{\mathrm{E}}$		$\frac{\vdash}{\bar{\omega}}$											\qquad					$\begin{aligned} & خ \\ & \vdots \\ & \text { Z } \\ & 0 \\ & \vdots \\ & \frac{1}{4} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\underset{\sim}{u}} \\ & \underset{\sim}{\underset{\sim}{u}} \\ & \underset{\sim}{\underset{\sim}{u}} \\ & \underset{\sim}{\underset{\sim}{u}} \underset{\sim}{\underset{\sim}{u}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 䓃 } \\ & \text { 山゙ } \end{aligned}$
0				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6				6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7				7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8				8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9				9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10				10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11				11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12				12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13				13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14				14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15				15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16				16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17				17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18				18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19				19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	$\begin{aligned} & \underset{\sim}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \underset{\sim}{0} \\ & \underset{\sim}{0} \end{aligned}$	$\underset{\sim}{0}$$\underset{0}{0}0\mathbb{D}$$\widetilde{\sim}$	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
21				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25				2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 33. BBCLK SYN Register 15 (Address = 01111)

$\frac{\mathrm{r}}{\overline{\mathrm{~m}}}$	$\begin{aligned} & \text { 므́n } \\ & \frac{t}{5} \end{aligned}$	$\sum_{\mathbf{Z}}^{\underset{\Sigma}{\omega}}$		$\frac{\stackrel{⿺}{\bar{\omega}}}{}$																$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & 0 \\ & \text { U } \\ & \text { K } \end{aligned}$		足
0	$\begin{aligned} & \stackrel{\hat{O}}{\substack{0}} \\ & \stackrel{\rightharpoonup}{\mathrm{~V}} \end{aligned}$			0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6				6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
7				7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	ণi			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9		$\begin{aligned} & \underset{\sim}{0} \\ & \underset{\sim}{0} \\ & 0 \\ & \underset{\sim}{0} \end{aligned}$		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
11				2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
12				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15				6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16				7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17				8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 33. BBCLK SYN Register 15 (Address = 01111) (continued)

$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\frac{\text { 믕 }}{\frac{5}{\mathrm{~m}}}$	$\sum_{\mathbb{Z}}^{\omega}$		$\frac{\stackrel{⿺}{\bar{\omega}}}{}$																$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & 0 \\ & \text { U } \\ & \text { 4 } \end{aligned}$		邑
18	$\begin{aligned} & \hat{o} \\ & \dot{\sim} \\ & \frac{v}{0} \\ & 0 \\ & \text { ט} \end{aligned}$			0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
19				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
20				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21	$\begin{aligned} & \hline \underset{\sim}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \mathbb{0} \\ & \underset{\sim}{0} \end{aligned}$	0 $\stackrel{0}{0}$ 0 0 $\boxed{0}$	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22	$z_{i}^{\prime} \stackrel{\vdots}{\stackrel{\rightharpoonup}{0}}$			0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
23				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
24	$\stackrel{\square}{8}$			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 34. BBCLK_MISC Register 16 (Address = 10000)

$\frac{5}{\square}$	$\frac{\text { 믄 }}{\frac{1}{\infty}}$	\sum_{\sum}^{ω}		$\frac{\leftarrow}{\bar{\omega}}$																$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & \text { O } \\ & \text { U } \end{aligned}$	$\begin{array}{\|l} \underset{\sim}{u} \\ \hline \end{array}$	$\begin{aligned} & \text { 岂 } \\ & \text { 山 } \end{aligned}$
0				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6				6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7				7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14				6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15				7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MAX2550 Band I，V，and VIII WCDMA Femtocell
Transceiver with GSM Monitoring

Table 34．BBCLK＿MISC Register 16 （Address＝10000）（continued）

$\frac{\vdash}{\bar{\omega}}$	$\frac{\text { ㅁ }}{\frac{1}{\circ}}$	\sum_{Σ}^{ω}		$\frac{\vdash}{\bar{\omega}}$																$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & 0 \\ & \text { U } \\ & \text { K } \end{aligned}$	$\begin{array}{\|l} \underset{\sim}{u} \\ \underset{\sim}{u} \end{array}$	$\begin{aligned} & \text { 邑 } \\ & \text { 山ٍ } \end{aligned}$
16	$\begin{aligned} & 0 \\ & \underset{\sim}{0} \\ & \underset{0}{0} \\ & 0 \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & D_{0}^{0} \\ & 0 \\ & \mathbb{O} \\ & \hline \end{aligned}$	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18				2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
19				3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
20				0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0
21	$\begin{aligned} & \underset{\sim}{0} \\ & \stackrel{\rightharpoonup}{\otimes} \\ & \mathbb{N} \\ & \underset{\sim}{\otimes} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{\otimes}{2} \\ & \stackrel{\otimes}{0} \\ & \underset{\sim}{\otimes} \end{aligned}$	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 35. BBCLK_SPARE Register 17 (Address = 10001)

$\frac{\mathrm{t}}{\bar{m}}$	$\begin{aligned} & \text { 므́ } \\ & \frac{1}{\mathbf{n}} \end{aligned}$	$\sum_{\mathbb{Z}}^{\omega}$		$\frac{\ddots}{\bar{\omega}}$		$\begin{aligned} & \searrow \\ & \text { Z } \\ & 0 \\ & \text { শ } \\ & \underset{\sim}{\sim} \\ & 0 \end{aligned}$														$\begin{aligned} & \searrow \\ & \text { Z } \\ & 0 \\ & 0 \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { w } \\ & \underset{\sim}{u} \end{aligned}$	邑
0	0 0 2 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & \stackrel{D}{0} \\ & 0 \\ & \underset{\sim}{0} \end{aligned}$	\square	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6				6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7				7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8				8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9				9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10				10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11				11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
12				12	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
13				13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14				14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15				15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16				16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17				17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	$\begin{aligned} & \bar{\varnothing} \\ & \stackrel{1}{\prime} \\ & \stackrel{\oplus}{\bar{\circ}} \end{aligned}$			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	$\hat{o}$$\stackrel{0}{\dot{V}}$$\stackrel{-}{1}$$\stackrel{\rightharpoonup}{\sigma}$			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25				6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Band I，V，and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 36．TX＿LPF Register 18 （Address＝10010）

$\frac{\vdash}{\bar{\omega}}$	$\frac{\text { 믄 }}{\frac{1}{\infty}}$	$\sum_{\underset{z}{\infty}}^{\omega}$		$\frac{\stackrel{\leftarrow}{\mathrm{o}}}{}$																$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & 0 \\ & \text { U } \\ & 4 \end{aligned}$		$\begin{aligned} & \text { 邑 } \\ & \text { 山゙ } \end{aligned}$
0			1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2				2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3				3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5				0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
6				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8				0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
9				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10	$\begin{aligned} & \stackrel{\infty}{\underset{\sim}{0}} \end{aligned}$			0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Table 36．TX＿LPF Register 18 （Address＝10010）（continued）

$\stackrel{\text { 匕 }}{\text { ¢ }}$	$\begin{aligned} & \text { 은 } \\ & \frac{\operatorname{r}}{1} \end{aligned}$	\sum_{Σ}^{ω}		$\frac{\vdash}{\bar{\infty}}$																$\begin{aligned} & \searrow \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 4 \end{aligned}$		$\begin{aligned} & \text { 邑 } \\ & \text { 山⿱山心㇒ } \end{aligned}$
11	$\begin{aligned} & \text { O} \\ & \stackrel{D}{D} \\ & \underset{\Phi}{0} \\ & \underset{\sim}{D} \end{aligned}$		\|	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
13				2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
14				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15				4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
16				5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
17				6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
18				7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
19				8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20				9	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
21				10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22				11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
23				12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24				13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25				0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 37. TX_PAD Register 19 (Address = 10011)

$\stackrel{\vdash}{\bar{\omega}}$	$\frac{\text { ㅁ }}{\frac{1}{\circ}}$	$\sum_{\mathbb{Z}}^{\mathrm{E}}$		$\frac{\mathrm{r}}{\overline{\mathrm{~m}}}$																$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & 0 \\ & 0 \\ & \text { U } \end{aligned}$	$\begin{array}{\|l} \underset{\sim}{u} \\ \underset{\sim}{u} \\ \underset{\sim}{\underset{\sim}{u}} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \end{array}$	$\begin{aligned} & \text { 邑 } \\ & \text { ๗ } \end{aligned}$
0				0	1	1	0	0	1	1	1	1	0	0	1	0	0	1	1	1	1	1
1				1	1	1	0	0	1	1	1	1	0	0	1	0	0	1	1	1	1	1
2				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4				2	0	0	1	1	0	0	0	0	1	1	0	1	1	0	0	0	0	0
5				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	$\begin{aligned} & \underset{O}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \underset{0}{0} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \underset{0}{0} \\ & 0 \\ & \mathbb{O} \\ & \widetilde{\sim} \end{aligned}$		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9				2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10				3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
11				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13				6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
14				7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15				8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
16				9	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
17				10	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
18				11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
19				12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20				13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21				14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22				15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23				16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24				17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25				18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 38. TX_UPX1 Register 20 (Address = 10100)

Band I，V，and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 39．TX＿UPX2 Register 21 （Address＝10101）

$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\begin{aligned} & \text { 믕 } \\ & \frac{1}{\circ} \end{aligned}$	$\sum_{\mathbb{Z}}^{\omega}$		$\frac{\llcorner }{\bar{m}}$									$\begin{aligned} & \lambda \\ & \vdots \\ & 0 \\ & \hline \end{aligned}$							$\begin{aligned} & \text { Z } \\ & \text { Z } \\ & 0 \\ & 0 \\ & \text { U } \end{aligned}$		$\begin{aligned} & \text { 邑 } \\ & \text { 山山 } \end{aligned}$
0	O	O		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	$\underset{\sim}{\infty}$	$\stackrel{\infty}{\mathbb{\infty}}$		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2				0	0	0	1	1	1	1	0	0	1	1	0	1	1	0	0	0	0	0
3				1	0	0	0	1	0	1	0	0	0	1	0	0	1	0	0	0	0	0
4				2	0	0	1	0	1	0	0	0	1	0	0	1	0	0	0	0	0	0
5				3	0	0	1	1	1	1	0	0	1	1	0	1	1	0	0	0	0	0
6	$\begin{aligned} & \underset{O}{0} \\ & \underset{0}{0} \\ & \mathbb{0} \\ & \mathbb{O} \end{aligned}$			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12				6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
13				7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14				8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15				9	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
16				10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17				11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18				12	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
19				13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20				14	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
21				15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22				16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23				17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24				18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25				19	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

MAX2550

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 40. TX_UPX3 Register 22 (Address = 10110)

Band I，V，and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 41．TX＿GAIN1 Register 23 （Address＝10111）

$\stackrel{\text { 匕 }}{\text { ¢ }}$	$\frac{\text { ㅁ }}{\frac{1}{\infty}}$	$\sum_{\mathbb{Z}}^{\mathrm{E}}$		$\frac{\llcorner }{\bar{\infty}}$																$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & 0 \\ & 0 \\ & \text { U } \end{aligned}$	$\begin{array}{\|l} \underset{\sim}{u} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \\ \underset{\sim}{u} \end{array}$	$\begin{aligned} & \text { 㒴 } \\ & \text { ๗ } \end{aligned}$
0		$\begin{aligned} & \stackrel{ᄃ}{\overline{0}} \\ & \mathbb{V} \\ & \times \end{aligned}$		0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2				2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3				3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
4				4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5				5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
6				6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
7				7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
8				8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
9				9	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10	$\begin{aligned} & \underset{\sim}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \underset{0}{0} \\ & \underset{\sim}{0} \end{aligned}$	0 0 2 0 0 $\underset{\sim}{0}$	｜	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
12				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14				4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
15				5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
16				6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17				7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18				8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19				9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20				10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21				11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
22				12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23				13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24	$\begin{aligned} & \hat{C} \\ & \stackrel{-}{V} \\ & \frac{1}{O} \\ & \frac{1}{0} \end{aligned}$			0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
25				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MAX2550

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 42. TX_GAIN2 Register 24 (Address = 11000)

$\stackrel{\text { ¢ }}{0}$	$\frac{\text { 은 }}{\frac{5}{\infty}}$	$\sum_{\mathbb{Z}}^{\omega}$		$\frac{\mathrm{r}}{\bar{\omega}}$																$\begin{aligned} & \searrow \\ & \text { Z } \\ & 0 \\ & 0 \\ & \text { U } \end{aligned}$		$\begin{aligned} & \text { 䓃 } \\ & \text { ש } \end{aligned}$
0				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6		H0000000000000		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8				2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
9				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10				4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
11				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	$\begin{aligned} & \bar{N} \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$			0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

MAX2550

Band I，V，and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 42．TX＿GAIN2 Register 24 （Address＝11000）（continued）

$\stackrel{\ddots}{\bar{\omega}}$		$\sum_{\Sigma}^{\mathrm{E}}$		$\frac{\mathrm{t}}{\boldsymbol{\omega}}$																$\begin{aligned} & \searrow \\ & Z \\ & \text { Z } \\ & 0 \\ & \text { U } \end{aligned}$		$\begin{aligned} & \text { 邑 } \\ & \text { 山 心 } \end{aligned}$
13	$\begin{aligned} & \underset{\sim}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \underset{\sim}{0} \\ & \underset{\sim}{0} \end{aligned}$		1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	$\begin{aligned} & \underset{\sim}{z} \\ & \mathbf{q}_{1}^{\prime} \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{0}{0} \\ & \stackrel{0}{\widetilde{C}} \\ & \underset{\sim}{\sim} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0
19	$\begin{aligned} & \underset{\sim}{0} \\ & \stackrel{\Delta}{\otimes} \\ & \underset{\sim}{0} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \underset{\sim}{0} \\ & \stackrel{\Delta}{0} \\ & \underset{\sim}{0} \\ & \underset{\sim}{0} \end{aligned}$	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
20				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$\bar{\sim}$				\bigcirc																		
\approx				\bigcirc																		
N				\ulcorner	\bigcirc																	
$\stackrel{\text { N }}{\sim}$				\sim	\bigcirc																	
$\stackrel{\sim}{\sim}$				ल	\bigcirc																	

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 43. Reserved Register 25 (Address = 11001)

$\stackrel{\ddots}{\bar{\omega}}$	$\begin{aligned} & \text { 은 } \\ & \frac{\operatorname{r}}{\mathbf{n}} \end{aligned}$	$\sum_{\mathbb{Z}}^{\omega}$		$\frac{\vdash}{\bar{\omega}}$		خ Z 0 N x 0 0 0														$\begin{aligned} & \text { خ} \\ & \text { Z } \\ & 0 \\ & 0 \\ & \text { U } \end{aligned}$		$\begin{aligned} & \text { 邑 } \\ & \text { שי゙ } \end{aligned}$
0	$\underset{\sim}{0}$$\underset{\sim}{\otimes}0\underset{\sim}{0}$$\underset{\sim}{0}$	$\begin{aligned} & \underset{\sim}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \mathbb{0} \\ & \underset{\sim}{0} \end{aligned}$	\|	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6				6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7				7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8				8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9				9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10				10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11				11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12				12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13				13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14				14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15				15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16				16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17				17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18				18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19				19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20				20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21				21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22				22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23				23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24				24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25				25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 44. Reserved Register 26 (Address = 11010)

$\frac{\mathrm{t}}{\mathbf{m}}$	$\frac{\text { 믄 }}{\frac{!}{\infty}}$	$\sum_{\mathbb{Z}}^{\underset{Z}{\omega}}$	$\begin{aligned} & \text { Z } \\ & \text { 을 } \\ & \text { 른 } \\ & \text { 피 } \end{aligned}$	$\stackrel{\ddots}{\bar{m}}$		$\begin{aligned} & \grave{y} \\ & \text { Z } \\ & \text { O } \\ & \underset{\sim}{x} \\ & 0 \\ & 0 \end{aligned}$														\grave{Z} \vdots 0 0 U U		$\begin{aligned} & \text { 䓃 } \\ & \text { ๗ } \end{aligned}$
0		$\begin{aligned} & \underset{\sim}{0} \\ & \underset{\sim}{0} \\ & \mathbb{O} \\ & \underset{\sim}{\otimes} \end{aligned}$	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2				2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3				3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6				6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
7				7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
8				8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9				9	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10				10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11				11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12				12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13				13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14				14	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
15				15	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
16				16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17				17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18				18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19				19	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
20				20	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
21				21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22				22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23				23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24				24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25				25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 45. TXLO_FRAC Register 27 (Address = 11011)

$\stackrel{\ddots}{\bar{\omega}}$	$\begin{aligned} & \text { 믕 } \\ & \frac{1}{\circ} \end{aligned}$	$\sum_{\mathbb{Z}}^{\omega}$		$\stackrel{\ddots}{\bar{\omega}}$																$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & \text { O } \\ & \text { U } \end{aligned}$		$\begin{aligned} & \text { 邑 } \\ & \text { ש } \end{aligned}$
0				0	1	1	0	0	0	0	1	1	0	0	1	0	0	1	1	1	1	1
1				1	0	0	1	1	1	1	0	0	1	1	0	1	1	0	0	0	0	0
2				2	1	1	0	0	0	0	1	1	0	0	1	0	0	1	1	1	1	1
3				3	0	0	1	1	1	1	0	0	1	1	0	1	1	0	0	0	0	0
4				4	1	1	0	0	0	0	1	1	0	0	1	0	0	1	1	1	1	1
5				5	0	0	1	1	1	1	0	0	1	1	0	1	1	0	0	0	0	0
6				6	1	1	0	0	0	0	1	1	0	0	1	0	0	1	1	1	1	1
7				7	0	0	1	1	1	1	0	0	1	1	0	1	1	0	0	0	0	0
8				8	1	1	0	0	0	0	1	1	0	0	1	0	0	1	1	1	1	1
9				9	0	0	1	1	1	1	0	0	1	1	0	1	1	0	0	0	0	0
10				10	1	1	0	0	0	0	1	1	0	0	1	0	0	1	1	1	1	1
11				11	0	0	1	1	1	1	0	0	1	1	0	1	1	0	0	0	0	0
12				12	1	1	0	0	0	0	1	1	0	0	1	0	0	1	1	1	1	1
13				13	0	0	1	1	1	1	0	0	1	1	0	1	1	0	0	0	0	0
14				14	1	1	0	0	0	0	1	1	0	0	1	0	0	1	1	1	1	1
15				15	0	0	1	1	1	1	0	0	1	1	0	1	1	0	0	0	0	0
16				16	1	1	0	0	0	0	1	1	0	0	1	0	0	1	1	1	1	1
17				17	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
18				18	1	1	0	1	0	1	1	1	0	1	1	0	1	1	1	1	1	1
19				19	0	0	1	1	1	1	0	0	1	1	0	1	1	0	0	0	0	0
20		$\begin{aligned} & \underset{\sim}{0} \\ & \stackrel{1}{0} \\ & 0 \\ & \underset{\sim}{0} \end{aligned}$		0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
21				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25				6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Band I，V，and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 46．TXLO＿SYN Register 28 （Address＝11100）

$\frac{\mathrm{r}}{\overline{\mathrm{~m}}}$	$\frac{\text { 믄 }}{\frac{1}{0}}$	\sum_{\sum}^{ω}		$\stackrel{⿺ 𠃊}{\bar{\omega}}$																$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & 0 \\ & \text { U } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 䓃 } \\ & \text { 山 } \end{aligned}$
0	$\begin{aligned} & \stackrel{\rightharpoonup}{\cup} \\ & \stackrel{\rightharpoonup}{v} \\ & \stackrel{\rightharpoonup}{\gtrless} \end{aligned}$			0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1				1	1	1	1	0	1	0	1	1	1	0	1	1	0	1	1	1	1	1
2				2	1	1	0	0	0	0	1	1	0	0	1	0	0	1	1	1	1	1
3				3	1	1	1	0	1	0	1	1	1	0	1	1	0	1	1	1	1	1
4				4	0	0	1	0	1	0	0	0	1	0	0	1	0	0	0	0	0	0
5				5	1	1	0	1	0	1	1	1	0	1	1	0	1	1	1	1	1	1
6				6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
7				7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	$\stackrel{\stackrel{\sim}{\Perp}}{\Perp}$			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	$\begin{aligned} & \underset{\sim}{0} \\ & \underset{\sim}{\otimes} \\ & \underset{\sim}{0} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{0} \\ & \underset{\sim}{0} \\ & \underset{\sim}{\otimes} \\ & \underset{\sim}{0} \end{aligned}$	｜	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
11				2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
12				0	0	0	1	1	0	0	0	0	1	1	0	1	1	0	0	0	0	0
13				1	1	1	0	0	1	1	1	1	0	0	1	0	0	1	1	1	1	1

MAX2550 Band I, V, and VIII WCDMA Femtocell
Transceiver with GSM Monitoring

Table 46. TXLO_SYN Register 28 (Address = 11100) (continued)

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 47. TXLO_REF Register 29 (Address = 11101)

$\stackrel{\text { 匕 }}{0}$	$\begin{aligned} & \text { 은 } \\ & \frac{\operatorname{r}}{1} \end{aligned}$	$\sum_{\Sigma}^{\mathrm{E}}$		$\frac{\llcorner }{0}$																Z Z Z 0 U 4		$\begin{aligned} & \text { 邑 } \\ & \text { ๗ } \end{aligned}$
0				0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2				2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6				6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7				7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8				8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
9				9	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10				10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11				11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	$\underset{5}{\Sigma}$ $\stackrel{O}{Z}$ $\underset{\sim}{Z}$ $\underset{\sim}{Z}$ $\underset{\sim}{U}$			0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
13				0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0

MAX2550

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 47. TXLO_REF Register 29 (Address = 11101) (continued)

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 48. TXLO_AFCDAC Register 30 (Address = 11110)

$\begin{aligned} & \text { 등 } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { 믄 } \\ & \frac{!}{\infty} \end{aligned}$	$\sum_{\mathbb{Z}}^{\omega}$		$\frac{\llcorner }{\bar{\omega}}$																λ \vdots 0 0 \vdots 4		$\begin{aligned} & \text { 邑 } \\ & \text { שי } \end{aligned}$
0		$\begin{aligned} & 0 \\ & 0 \\ & \frac{\pi}{0} \\ & \frac{1}{0} \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 4 \end{aligned}$		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6				6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7				7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8				8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9				9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10				10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11				11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
12		$\begin{aligned} & \underset{0}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \mathbb{0} \\ & \mathbb{D} \end{aligned}$	I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18				6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	$\begin{aligned} & Z \underset{U}{z} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{0}{1} \\ & 0 \\ & 0 \\ & 0 \\ & \frac{1}{4} \\ & \frac{1}{4} \end{aligned}$		0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
20				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22				2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23				3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Table 49. Reserved Register 31 (Address = 11111)

$\frac{\ddots}{\bar{\omega}}$	$\begin{aligned} & \text { 은 } \\ & \frac{t}{\mathbf{n}} \end{aligned}$			$\stackrel{\digamma}{\bar{\omega}}$																$\begin{aligned} & \text { خ } \\ & \text { Z } \\ & 0 \\ & \text { U } \\ & \text { K } \end{aligned}$		$\begin{aligned} & \text { 邑 } \\ & \text { ש } \end{aligned}$
0	$\begin{aligned} & \underset{\sim}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \mathbb{O} \\ & \underset{\sim}{0} \end{aligned}$		\|	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2				2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3				3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
4				4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5				5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6				6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7				7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8				8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9				9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10				10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11				11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12				12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13				13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14				14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15				15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16				16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17				17	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
18				18	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
19				19	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
20				20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21				21	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
22				22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23				23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24				24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25				25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Applications Information

Layout Considerations

The EV kit and reference design serve as a guide for PCB layout. Keep RF signal lines as short as possible to minimize losses and radiation. Use controlled impedance
on all high-frequency traces. The exposed pad must be soldered evenly to the board's ground plane for proper operation. Use abundant ground vias between RF traces to minimize undesired coupling. Bypass each $V_{C C}$ _ pin to ground with capacitors placed as close as possible to the pin.

Simplified Block Diagram

Ordering Information

PART	BAND	TEMP RANGE	PIN- PACKAGE
MAX2550ETN+	I, V, and VIII	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	56 TQFN-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package. ${ }^{*} E P=$ Exposed pad.

Package Information

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a " + ", "\#", or " - " in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
56 TQFN-EP	$T 5677+2$	$\underline{\underline{21-0144}}$	$\underline{90-0043}$

MAX2550
Band I, V, and VIII WCDMA Femtocell Transceiver with GSM Monitoring

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$7 / 12$	Initial release	-

maxim
integrated $_{\text {ww }}$

