## features

- Sample Rate: 20Msps
- 81.6dB SNR and 100dB SFDR (2.5V Range)
- 90dB SFDR at 70 MHz (1.667V $\mathrm{VP}_{\text {-p }}$ Input Range)
- PGA Front End (2.5V ${ }_{\text {P-p }}$ or $1.667 \mathrm{~V}_{\text {P-p }}$ Input Range)
- 380MHz Full Power Bandwidth S/H
- Optional Internal Dither
- Optional Data Output Randomizer
- Single 3.3V Supply
- Power Dissipation: 211mW
- Clock Duty Cycle Stabilizer
- Out-of-Range Indicator
- Pin Compatible Family 25Msps: LTC2203 (16-Bit) 10Msps: LTC2202 (16-Bit)
- 48-Pin ( $7 \mathrm{~mm} \times 7 \mathrm{~mm}$ ) QFN Package


## APPLICATIONS

- Telecommunications
- Receivers
- Cellular Base Stations
- Spectrum Analysis
- Imaging Systems
- ATE


## DESCRIPTIOn

The LTC ${ }^{\circledR 2201}$ is a 20 Msps , sampling 16 -bit A/D converter designed for digitizing high frequency, wide dynamic range signals with input frequencies up to 380 MHz . The input range of the ADC can be optimized with the PGA front end. The LTC2201 is perfect for demanding applications, with AC performance that includes 81.6dB SNR and 100dB spurious free dynamic range (SFDR). Maximum DC specs include $\pm 5$ LSB INL, $\pm 1$ LSB DNL (no missing codes).
A separate output power supply allows the CMOS output swing to range from 0.5 V to 3.6 V .
A single-ended CLK input controls converter operation. An optional clock duty cycle stabilizerallows high performance at full speed with a wide range of clock duty cycles.
©T, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

## TYPICAL APPLICATION



Integral Nonlinearity (INL) vs Output Code


## ABSOLUTE MAXIMUM RATINGS

$\mathrm{OV}_{D D}=\mathrm{V}_{\mathrm{DD}}$ (Notes 1 and 2)
Supply Voltage (VD)................................. -0.3 V to 4 V
Digital Output Supply Voltage ( $0 \mathrm{~V}_{\mathrm{DD}}$ )......... -0.3 V to 4 V
Digital Output Ground Voltage (OGND)........-0.3V to 1 V
Analog Input Voltage (Note 3) ..... -0.3 V to (VDD +0.3 V )
Digital Input Voltage .................... -0.3 V to (VDD +0.3 V )
Digital Output Voltage............... -0.3 V to ( $0 \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ )
Power Dissipation .2000 mW
Operating Temperature Range
LTC2201C $\qquad$ $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC2201I $\qquad$ $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range ................. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

PIn COnfiGURATIOn


## ORDER INFORMATION

| LEAD FREE FINISH | TAPE AND REEL | PART MARKING* | PACKAGE DESCRIPTION | TEMPERATURE RANGE |
| :--- | :--- | :--- | :--- | :--- |
| LTC2201CUK\#PBF | LTC2201CUK\#TRPBF | LTC2201UK | $48-$ Lead $(7 \mathrm{~mm} \times 7 \mathrm{~mm})$ Plastic QFN | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| LTC2201IUK\#PBF | LTC2201IUK\#TRPBF | LTC2201UK | $48-$ Lead $(7 \mathrm{~mm} \times 7 \mathrm{~mm})$ Plastic QFN | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

COMVERTER CHARACTERSTCS The • denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 4)

| PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Resolution (No missing codes) |  | 16 |  |  |  |
| Integral Linearity Error | Differential Analog Input (Note 5) | $\bullet$ | $\pm 1.5$ | $\pm 5$ | LSB |
| Differential Linearity Error | Differential Analog Input | $\bullet$ | $\pm 0.3$ | $\pm 1$ | LSB |
| Offset Error | (Note 6) | $\bullet$ | $\pm 2$ | $\pm 10$ | mV |
| Offset Drift |  |  | $\pm 10$ | $\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ |  |
| Gain Error | External Reference | $\bullet$ | $\pm 0.2$ | $\pm 1.5$ | $\% \mathrm{FS}$ |
| Full-Scale Drift | Internal Reference <br> External Reference | $\pm 30$ | $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ <br>  <br> Transition Noise External Reference (2.5V Range, PGA =0) |  | $\pm 15$ |

A $\cap$ ALOG InPUT The $\bullet$ denotes the specifications which apply over the full operating temperature range, otherwise
specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 4)

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX |
| :--- | :--- | :--- | :--- | :---: | :---: | UNITS

РЧ円ค円ПC ACCURACY The o denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $A_{I N}=-1 \mathrm{dBFS}$. (Note 4)

| SYMBOL | PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SNR | Signal-to-Noise Ratio | 1 MHz Input (2.25V Range, PGA = 0) 1 MHz Input (1.667V Range, $\mathrm{PGA}=1$ ) |  |  | $\begin{aligned} & 81.6 \\ & 79.4 \end{aligned}$ |  | $\begin{aligned} & \mathrm{dBFS} \\ & \text { dBFS } \end{aligned}$ |
|  |  | 5 MHz Input (2.5V Range, PGA = 0) 5 MHz Input (1.667V Range, $\mathrm{PGA}=1$ ) | $\bullet$ | 80 | $\begin{aligned} & 81.6 \\ & 79.4 \end{aligned}$ |  | $\begin{aligned} & \text { dBFS } \\ & \text { dBFS } \end{aligned}$ |
|  |  | 12.5 MHz Input (2.5V Range, PGA = 0) 12.5MHz Input (1.667V Range, $\mathrm{PGA}=1$ ) |  |  | $\begin{aligned} & 81.4 \\ & 79.3 \end{aligned}$ |  | $\begin{aligned} & \mathrm{dBFS} \\ & \text { dBFS } \end{aligned}$ |
|  |  | 30MHz Input (2.5V Range, PGA = 0) 30 MHz Input (1.667V Range, PGA = 1) |  |  | $\begin{aligned} & 80.8 \\ & 78.9 \end{aligned}$ |  | $\begin{aligned} & \mathrm{dBFS} \\ & \mathrm{dBFS} \end{aligned}$ |
|  |  | 70MHz Input (2.5V Range, PGA = 0) 70MHz Input (1.667V Range, PGA =1) |  |  | $\begin{aligned} & 78.3 \\ & 77.2 \end{aligned}$ |  | $\begin{aligned} & \text { dBFS } \\ & \text { dBFS } \end{aligned}$ |

DYNAMIC ACCURACY The denotes the specifications which apply ver the full operating temperature range,
otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{A}_{I N}=-1 \mathrm{dBFS}$. (Note 4)

| SYMBOL | PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SFDR | Spurious Free Dynamic Range $2^{\text {nd }}$ or $3^{\text {rd }}$ Harmonic | 1 MHz Input (2.5V Range, PGA = 0) 1 MHz Input (1.667V Range, $\mathrm{PGA}=1$ ) |  |  | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ |  | dBC dBC |
|  |  | 5 MHz Input (2.5V Range, PGA = 0) 5 MHz Input (1.667V Range, $\mathrm{PGA}=1$ ) | $\bullet$ | 85 | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ |  | dBC dBC |
|  |  | 12.5 MHz Input (2.5V Range, PGA = 0) <br> 12.5MHz Input (1.667V Range, $\mathrm{PGA}=1$ ) |  |  | $\begin{gathered} 95 \\ 100 \end{gathered}$ |  | dBC dBC |
|  |  | 30 MHz Input (2.5V Range, $\mathrm{PGA}=0$ ) 30MHz Input (1.667V Range, PGA = 1) |  |  | $\begin{aligned} & 90 \\ & 95 \end{aligned}$ |  | dBC dBC |
|  |  | 70MHz Input (2.5V Range, PGA = 0) 70MHz Input (1.667V Range, PGA = 1) |  |  | $\begin{aligned} & 85 \\ & 90 \end{aligned}$ |  | dBC dBc |
| SFDR | Spurious Free Dynamic Range 4th Harmonic or Higher | 1 MHz Input (2.5V Range, PGA = 0) 1 MHz Input (1.667V Range, $\mathrm{PGA}=1$ ) |  |  | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ |  | dBC dBC |
|  |  | 5 MHz Input (2.5V Range, PGA $=0$ ) 5 MHz Input (1.667V Range, $\mathrm{PGA}=1$ ) | $\bullet$ | 90 | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ |  | dBC dBC |
|  |  | 12.5MHz Input (2.5V Range, PGA = 0) <br> 12.5MHz Input (1.667V Range, $\mathrm{PGA}=1$ ) |  |  | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ |  | dBC dBC |
|  |  | 30MHz Input (2.5V Range, PGA = 0) 30MHz Input ( 1.667 V Range, $\mathrm{PGA}=1$ ) |  |  | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ |  | dBC dBC |
|  |  | 70MHz Input (2.5V Range, PGA = 0) 70MHz Input (1.667V Range, PGA = 1) |  |  | $\begin{aligned} & 90 \\ & 90 \end{aligned}$ |  | dBC dBC |
| S/(N+D) | Signal-to-Noise Plus Distortion Ratio | 1 MHz Input (2.5V Range, PGA = 0) 1 MHz Input (1.667V Range, $\mathrm{PGA}=1$ ) |  |  | $\begin{aligned} & 81.5 \\ & 79.3 \end{aligned}$ |  | $\begin{aligned} & \mathrm{dBFS} \\ & \mathrm{dBFS} \end{aligned}$ |
|  |  | 5 MHz Input (2.5V Range, PGA = 0) 5 MHz Input (1.667V Range, $\mathrm{PGA}=1$ ) | $\bullet$ | 79.7 | $\begin{aligned} & 81.5 \\ & 79.3 \end{aligned}$ |  | $\begin{aligned} & \mathrm{dBFS} \\ & \text { dBES } \end{aligned}$ |
|  |  | 12.5MHz Input (2.5V Range, PGA = 0) <br> 12.5MHz Input (1.667V Range, $\mathrm{PGA}=1$ ) |  |  | $\begin{aligned} & 81.3 \\ & 79.2 \end{aligned}$ |  | $\begin{aligned} & \text { dBFS } \\ & \text { dBES } \end{aligned}$ |
|  |  | 30 MHz Input (2.5V Range, PGA = 0) 30 MHz Input (1.667V Range, $\mathrm{PGA}=1$ ) |  |  | $\begin{aligned} & 80.6 \\ & 78.6 \end{aligned}$ |  | $\begin{aligned} & \mathrm{dBFS} \\ & \mathrm{dBFS} \end{aligned}$ |
|  |  | 70MHz Input (2.5V Range, PGA = 0) 70MHz Input (1.667V Range, PGA = 1) |  |  | $\begin{gathered} 78.1 \\ 77 \end{gathered}$ |  | $\begin{aligned} & \mathrm{dBFS} \\ & \mathrm{dBFS} \end{aligned}$ |
| SFDR | Spurious Free Dynamic Range at -25 dBFS Dither "OFF" | 1 MHz Input (2.5V Range, PGA = 0) 1 MHz Input (1.667V Range, $\mathrm{PGA}=1$ ) |  |  | $\begin{aligned} & 105 \\ & 105 \end{aligned}$ |  | $\begin{aligned} & \mathrm{dBFS} \\ & \mathrm{dBFS} \end{aligned}$ |
|  |  | 5 MHz Input (2.5V Range, PGA = 0) 5 MHz Input (1.667V Range, $\mathrm{PGA}=1$ ) |  |  | $\begin{aligned} & 105 \\ & 105 \end{aligned}$ |  | $\begin{aligned} & \mathrm{dBFS} \\ & \mathrm{dBFS} \end{aligned}$ |
|  |  | 12.5 MHz Input (2.5V Range, PGA = 0) <br> 12.5MHz Input (1.667V Range, $\mathrm{PGA}=1$ ) |  |  | $\begin{aligned} & 105 \\ & 105 \end{aligned}$ |  | $\mathrm{dBFS}$ $\mathrm{dBFS}$ |
|  |  | 30 MHz Input (2.5V Range, PGA = 0) 30MHz Input (1.667V Range, PGA = 1) |  |  | $\begin{aligned} & 105 \\ & 105 \end{aligned}$ |  | $\mathrm{dBFS}$ $\mathrm{dBFS}$ |
|  |  | 70MHz Input (2.5V Range, PGA = 0) 70MHz Input (1.667V Range, $\mathrm{PGA}=1$ ) |  |  | $\begin{aligned} & 100 \\ & 100 \end{aligned}$ |  | $\begin{aligned} & \mathrm{dBFS} \\ & \mathrm{dBFS} \end{aligned}$ |

DYПAMIC ACCURACY The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{A}_{I N}=-1 \mathrm{dBFS}$. (Note 4)

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SFDR | Spurious Free Dynamic Range at -25dBFS Dither "ON" | 1 MHz Input (2.5V Range, PGA = 0) 1 MHz Input (1.667V Range, $\mathrm{PGA}=1$ ) |  | $\begin{aligned} & 115 \\ & 115 \end{aligned}$ |  | $\begin{aligned} & \text { dBFS } \\ & \text { dBFS } \end{aligned}$ |
|  |  | 5 MHz Input (2.5V Range, PGA = 0) 5 MHz Input (1.667V Range, $\mathrm{PGA}=1$ ) |  | $\begin{aligned} & 115 \\ & 115 \end{aligned}$ |  | $\begin{aligned} & \mathrm{dBFS} \\ & \mathrm{dBFS} \end{aligned}$ |
|  |  | 12.5MHz Input (2.5V Range, PGA = 0) <br> 12.5MHz Input (1.667V Range, $\mathrm{PGA}=1$ ) |  | $\begin{aligned} & 115 \\ & 115 \end{aligned}$ |  | $\begin{aligned} & \mathrm{dBFS} \\ & \mathrm{dBFS} \end{aligned}$ |
|  |  | 30 MHz Input (2.5V Range, PGA = 0) 30MHz Input (1.667V Range, PGA = 1) |  | $\begin{aligned} & 115 \\ & 115 \end{aligned}$ |  | $\begin{aligned} & \mathrm{dBFS} \\ & \mathrm{dBFS} \end{aligned}$ |
|  |  | 70 MHz Input (2.5V Range, $\mathrm{PGA}=0$ ) 70MHz Input (1.667V Range, PGA = 1) |  | $\begin{aligned} & 110 \\ & 110 \end{aligned}$ |  | $\begin{aligned} & \mathrm{dBFS} \\ & \mathrm{dBFS} \end{aligned}$ |

COMMOП MODE BIAS CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 4)

| PARAMETER | CONDITIONS | MIN | TYP | MAX |
| :--- | :--- | ---: | ---: | ---: |
| $V_{\text {CM }}$ Output Voltage | $\mathrm{I}_{\text {OUT }}=0$ | 1.15 | 1.25 | 1.35 |
| $\mathrm{~V}_{\text {CM }}$ Output Tempco | $\mathrm{I}_{\text {OUT }}=0$ | V |  |  |
| $\mathrm{~V}_{\text {CM }}$ Line Regulation | $3.135 \mathrm{~V} \leq \mathrm{V}_{\text {DD }} \leq 3.465 \mathrm{~V}$ | $\pm 40$ | $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |  |
| $\mathrm{V}_{\text {CM }}$ Output Resistance | $1 \mathrm{~mA} \leq\left\|\mathrm{I}_{\text {OUT }}\right\| \leq 1 \mathrm{~mA}$ | 1 | $\mathrm{mV} / \mathrm{V}$ |  |

DIGITAL INPUTS AחD DIGITAL OUTPUTS The edenotes the specifications which apply ver the
full operating temperature range, otherwise specifications are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$. (Note 4)

| SYMBOL | PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LOGIC INPUTS (CLK, $\overline{\mathrm{OE}}$, DITH, PGA, SHDN, RAND) |  |  |  |  |  |  |  |
| $\mathrm{V}_{\text {IH }}$ | High Level Input Voltage | $V_{D D}=3.3 \mathrm{~V}$ | $\bullet$ | 2 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage | $V_{D D}=3.3 \mathrm{~V}$ | $\bullet$ |  |  | 0.8 | V |
| IN | Digital Input Current | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}$ | $\bullet$ |  |  | $\pm 10$ | $\mu \mathrm{A}$ |
| $\mathrm{C}_{\text {IN }}$ | Digital Input Capacitance | (Note 7) |  |  | 1.5 |  | pF |

LOGIC OUTPUTS

| $\mathrm{OV}_{\text {DD }}=3.3 \mathrm{~V}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OH }}$ | High Level Output Voltage | $V_{D D}=3.3 \mathrm{~V}$ | $\begin{aligned} & I_{0}=-10 \mu \mathrm{~A} \\ & I_{0}=-200 \mu \mathrm{~A} \end{aligned}$ | $\bullet$ | $\begin{array}{cc}  & 3.299 \\ 3.1 & 3.29 \end{array}$ |  | V |
| $\mathrm{V}_{0 \mathrm{~L}}$ | Low Level Output Voltage | $V_{D D}=3.3 \mathrm{~V}$ | $\begin{aligned} & \mathrm{I}_{0}=160 \mu \mathrm{~A} \\ & \mathrm{I}_{0}=1.6 \mathrm{~mA} \end{aligned}$ | $\bullet$ | $\begin{aligned} & 0.01 \\ & 0.10 \end{aligned}$ | 0.4 | V |
| ISOURCE | Output Source Current | $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ |  |  | -50 |  | mA |
| $\mathrm{I}_{\text {SINK }}$ | Output Sink Current | $\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$ |  |  | 50 |  | mA |
| $\underline{\mathrm{O}} \mathrm{VD}=2.5 \mathrm{~V}$ |  |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ | $\mathrm{I}_{0}=-200 \mu \mathrm{~A}$ |  | 2.49 |  | V |
| $\mathrm{V}_{\text {OL }}$ | Low Level Output Voltage | $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ | $\mathrm{I}_{0}=1.60 \mathrm{~mA}$ |  | 0.1 |  | V |
| $\mathrm{OV}_{\mathrm{DD}}=1.8 \mathrm{~V}$ |  |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ | $\mathrm{I}_{0}=-200 \mu \mathrm{~A}$ |  | 1.79 |  | V |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ | $\mathrm{I}_{0}=1.60 \mathrm{~mA}$ |  | 0.1 |  | V |


range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{A}_{I N}=-1 \mathrm{dBFS}$. (Note 4)

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| $V_{D D}$ | Analog Supply Voltage |  | $\bullet$ | 3.135 | 3.3 | 3.465 |
| $P_{\text {SHDN }}$ | Shutdown Power | SHDN $=V_{D D}, C L K=V_{D D}$ |  |  | 2 |  |
| V $_{\text {DD }}$ | Output Supply Voltage |  | $\bullet$ | 0.5 | mW |  |
| $I_{\text {VDD }}$ | Analog Supply Current |  | $\bullet$ | 3.6 | V |  |
| $P_{\text {DIS }}$ | Power Dissipation |  | $\bullet$ | 64 | 80 | mA |

TIMING CHARACTERISTICS The edenotes the speciifications which apply vere the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 4)

| SYMBOL | PARAMETER | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\text {S }}$ | Sampling Frequency |  | $\bullet$ | 1 |  | 20 | MHz |
| $t_{L}$ | CLK Low Time | Duty Cycle Stabilizer Off Duty Cycle Stabilizer On | $\bullet$ | $\begin{gathered} 20 \\ 5 \end{gathered}$ | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ | $\begin{aligned} & 500 \\ & 500 \end{aligned}$ | ns |
| $\mathrm{t}_{\mathrm{H}}$ | CLK High Time | Duty Cycle Stabilizer Off Duty Cycle Stabilizer On | $\bullet$ | $\begin{gathered} \hline 20 \\ 5 \end{gathered}$ | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ | $\begin{aligned} & 500 \\ & 500 \end{aligned}$ | ns |
| $\mathrm{t}_{\text {AP }}$ | Sample-and-Hold Aperture Delay |  |  |  | 0.9 |  | ns |
| $t_{D}$ | CLK to DATA Delay | $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ (Note 7) | $\bullet$ | 1.3 | 3.1 | 4.9 | ns |
| $\mathrm{t}_{0}$ | CLK to CLKOUT Delay | $C_{L}=5 \mathrm{pF}$ (Note 7) | $\bullet$ | 1.3 | 3.1 | 4.9 | ns |
| $\mathrm{t}_{\text {SKEW }}$ | DATA to CLKOUT Skew | $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ (Note 7) | $\bullet$ | -0.6 | 0 | 0.6 | ns |
|  | DATA Access Time Bus Relinquish Time | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text { (Note 7) } \\ & \text { (Note 7) } \end{aligned}$ | $\bullet$ |  | $\begin{aligned} & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ | ns |
| Pipeline <br> Latency |  |  |  |  | 7 |  | Cycles |

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: All voltage values are with respect to GND, with GND and OGND shorted (unless otherwise noted).
Note 3: When these pin voltages are taken below GND or above $V_{D D}$, they will be clamped by internal diodes. This product can handle input currents of greater than 100 mA below $G N D$ or above $V_{D D}$ without latchup.
Note 4: $V_{D D}=3.3 V, f_{\text {SAMPLE }}=20 \mathrm{MHz}$, input range $=2.5 \mathrm{~V}_{\text {P-p }}$ with differential drive ( $\mathrm{PGA}=0$ ), unless otherwise specified.

Note 5: Integral nonlinearity is defined as the deviation of a code from a "best fit straight line" to the transfer curve. The deviation is measured from the center of the quantization band.
Note 6: Offset error is the offset voltage measured from $-1 / 2 L S B$ when the output code flickers between 0000000000000000 and 111111111111 1111 in 2's complement output mode.
Note 7: Guaranteed by design, not subject to test.
Note 8: Recommended operating conditions.
Note 9: Dynamic current from switched capacitor inputs is large compared to DC leakage current, and will vary with sample rate.
Note 10: Leakage current will experience transient at power up. Keep resistance < $1 \mathrm{k} \Omega$.

## TIMING DIAGRAM



## TYPICAL PERFORMAOCE CHARACTERISTICS

Integral Nonlinearity (INL) vs Output Code


Differential Nonlinearity (DNL) vs Output Code


AC Grounded Input Histogram (256k Samples)



2201604

SFDR vs Input Level,


SFDR vs Input Level, $\mathrm{f}_{\mathrm{IN}}=12.7 \mathrm{MHz}$, PGA = 0, Dither "Off"


## TYPICAL PERFORMANCE CHARACTERISTICS



SFDR vs Input Level, $\mathfrak{f}_{I N}=70.1 \mathrm{MHz}$,
PGA = 0, Dither "Off"



SFDR vs Input Level, $\mathfrak{f}_{\text {IN }}=30.1 \mathrm{MHz}$,
PGA $=0$, Dither "Off"


SFDR vs Input Level, $\mathfrak{f}_{\text {IN }}=70.1 \mathrm{MHz}$, PGA $=0$, Dither "On"


SNR and SFDR vs Supply Voltage
$\left(V_{D D}\right), f_{I N}=5 \mathrm{MHz}$


SFDR vs Input Level, $\mathfrak{f}_{\mathrm{IN}}=30.1 \mathrm{MHz}$, PGA = 0, Dither "On"


SFDR (HD2 or HD3)
vs Input Frequency


Ivod vs Sample Rate, 5 MHz Sine Wave, -1dBFS


## TYPICAL PERFORMANCE CHARACTERISTICS



Mid-Scale Settling After Wake
Up from Shutdown or Starting
Encode Clock


Offset Voltage
vs Temperature, 5 Units


SFDR vs Input Common Mode
Voltage, $\mathrm{f}_{\mathrm{IN}}=5 \mathrm{MHz},-1 \mathrm{dBFS}$,
PGA $=0$


Full-Scale Settling After Wake
Up from Shutdown or Starting
Encode Clock


2201 G20

## PIn functions

SENSE (Pin1): Reference Mode Select and External Reference Input. Tie SENSE to $V_{D D}$ with $1 \mathrm{k} \Omega$ or less to select the internal 2.5 V bandgap reference. An external reference of 2.5 V or 1.25 V may be used; both reference values will set a full scale ADC range of $2.5 \mathrm{~V}(\mathrm{PGA}=0)$.
$V_{\text {CM }}$ (Pin2): 1.25 V Output. Optimum voltage for inputcommon mode. Must be bypassed to ground with a minimum of $2.2 \mu \mathrm{~F}$. Ceramic chip capacitors are recommended.
$V_{D D}$ (Pins 3, 4, 12, 13, 14): 3.3V Analog Supply Pin. Bypass to GND with $0.1 \mu \mathrm{~F}$ ceramic chip capacitors.
GND (Pins 5, 8, 9, 11, 15, 48, 49): ADC Power Ground.
$\mathrm{A}_{\mathrm{IN}^{+}}$(Pin 6): Positive Differential Analog Input.
$A_{I N}{ }^{-}$(Pin 7): Negative Differential Analog Input.
CLK (Pin 10): Clock Input. The hold phase of the sample-and-hold circuit begins on the falling edge. The output data may be latched on the rising edge of CLK.
SHDN (Pin 16): Power Shutdown Pin. SHDN = low results in normal operation. SHDN = high results in powered down analog circuitry and the digital outputs are placed in a high impedance state.
DITH (Pin 17): Internal Dither Enable Pin. DITH = Iow disables internal dither. DITH = high enables internal dither. Refer to Internal Dither section of this data sheet for details on dither operation.

D0-D15 (Pins 18-22, 26-28, 32-35 and 39-42): Digital Outputs. D15 is the MSB.
OGND (Pins 23, 31 and 38): Output Driver Ground.
OV ${ }_{\text {DD }}$ (Pins 24, 25, 36, 37): Positive Supply for the Output Drivers. Bypass to ground with $0.1 \mu \mathrm{~F}$ capacitors.

CLKOUT$^{-}$(Pin 29): Data Valid Output. CLKOUT $^{-}$will toggle at the sample rate. Latch the data on the falling edge of CLKOUT ${ }^{-}$.
CLKOUT+ (Pin 30): Inverted Data Valid Output. CLKOUT ${ }^{+}$ will toggle at the sample rate. Latch the data on the rising edge of CLKOUT ${ }^{+}$.
OF (Pin 43): Over/Under Flow Digital Output. OF is high when an over or under flow has occurred.
$\overline{\mathbf{O E}}$ (Pin 44): Output Enable Pin. Low enables the digital output drivers. High puts digital outputs in Hi-Z state.
MODE (Pin 45): Output Format and Clock Duty Cycle Stabilizer Selection Pin. Connecting MODE to OV selects offset binary output format and disables the clock duty cycle stabilizer. Connecting MODE to $1 / 3 V_{D D}$ selects offset binary output format and enables the clock duty cycle stabilizer. Connecting MODEto 2/3V ${ }_{\text {DD }}$ selects 2'scomplement output format and enables the clock duty cycle stabilizer. Connecting MODE to VDD selects 2's complement output format and disables the clock duty cycle stabilizer.
RAND (Pin 46): Digital Output Randomization Selection Pin. RAND low results in normal operation. RAND high selects D1-D15 to be EXCLUSIVE-ORed with D0 (the LSB). The output can be decoded by again applying an XOR operation between the LSB and all other bits. The mode of operation reduces the effects of digital output interference.
PGA(Pin 47): Programmable GainAmplifierControl Pin. Low selects a front-end gain of 1 , input range of $2.5 \mathrm{~V}_{\mathrm{P} \text {-p. }}$. High selects a front-end gain of 1.5 , input range of $1.667 \mathrm{~V}_{\text {P-p. }}$

GND (Exposed Pad, Pin 49): ADC Power Ground. The exposed pad on the bottom of the package must be soldered to ground.

## BLOCK DIAGRAM



Figure 1. Functional Block Diagram

## APPLICATIONS INFORMATION

## DYNAMIC PERFORMANCE

## Signal-to-Noise Plus Distortion Ratio

The signal-to-noise plus distortion ratio $[\mathrm{S} /(\mathrm{N}+\mathrm{D})]$ is the ratio between the RMS amplitude of the fundamental input frequency and the RMS amplitude of all other frequency components at the ADC output. The output is band limited to frequencies above DC to below half the sampling frequency.

## Signal-to-Noise Ratio

The signal-to-noise (SNR) is the ratio between the RMS amplitude of the fundamental input frequency and the RMS amplitude of all other frequency components, except the first five harmonics.

## Total Harmonic Distortion

Total harmonic distortion is the ratio of the RMS sum of all harmonics of the input signal to the fundamental itself. The out-of-band harmonics alias into the frequency band between DC and half the sampling frequency. THD is expressed as:

$$
\left.T H D=-20 \log \left(\sqrt{\left(V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+\ldots V_{N}^{2}\right.}\right) / V_{1}\right)
$$

where $\mathrm{V}_{1}$ is the RMS amplitude of the fundamental frequency and $\mathrm{V}_{2}$ through $\mathrm{V}_{\mathrm{N}}$ are the amplitudes of the second through nth harmonics.

## Intermodulation Distortion

If the ADC input signal consists of more than one spectral component, the ADC transfer function nonlinearity can produce intermodulation distortion (IMD) in addition to THD. IMD is the change in one sinusoidal input caused by the presence of another sinusoidal input at a different frequency.

If two pure sine waves of frequencies fa and fb are applied to the ADC input, nonlinearities in the ADC transfer function can create distortion products at the sum and difference frequencies of $m f a \pm n f b$, where $m$ and $n=$ $0,1,2,3$, etc. For example, the 3rd order IMD terms include $(2 f \mathrm{fa}+\mathrm{fb})$, $(\mathrm{fa}+2 \mathrm{fb})$, $(2 \mathrm{fa}-\mathrm{fb})$ and ( $\mathrm{fa}-2 \mathrm{fb})$. The 3rd order IMD is defined as the ratio of the RMS value of either input tone to the RMS value of the largest 3rd order IMD product.

## Spurious Free Dynamic Range (SFDR)

The ratio of the RMS input signal amplitude to the RMS value of the peak spurious spectral component expressed in dBc. SFDR may also be calculated relative to full scale and expressed in dBFS.

## Full Power Bandwidth

The Full Power bandwidth is that input frequency at which the amplitude of the reconstructed fundamental is reduced by 3 dB for a full scale input signal.

## Aperture Delay Time

The time from when CLK reaches 0.45 of $V_{D D}$ to the instant that the input signal is held by the sample-andhold circuit.

## Aperture Delay Jitter

The variation in the aperture delay time from conversion to conversion. This random variation will result in noise when sampling an AC input. The signal to noise ratio due to the jitter alone will be:

$$
\text { SNR }_{\text {JITTER }}=-20 \log \left(2 \pi \bullet f_{I N} \bullet t_{J I T E R}\right)
$$

## APPLICATIONS InFORMATION

## CONVERTER OPERATION

The LTC2201 is a CMOS pipelined multistep converter with a front-end PGA. As shown in Figure 1, the converter has five pipelined ADC stages; a sampled analog input will result in a digitized value seven cycles later (see the Timing Diagram section). The analog input is differential for improved common mode noise immunity and to maximize the input range. Additionally, the differential input drive will reduce even order harmonics of the sample-and-hold circuit.
Each pipelined stage shown in Figure 1 contains an ADC, a reconstruction DAC and an interstage amplifier. In operation, the ADC quantizes the input to the stage and the quantized value is subtracted from the input by the DAC to produce a residue. The residue is amplified and output by the residue amplifier. Successive stages operate out of phase so that when odd stages are outputting their residue, the even stages are acquiring that residue and vice versa.
The phase of operation is determined by the state of the CLK input pin.
When CLK is high, the analog input is sampled differentially directly onto the input sample-and-hold capacitors, inside the "input S/H" shown in the block diagram. At the instant that CLK transitions from high to low, the voltage on the sample capacitors is held. While CLK is low, the held input voltage is buffered by the S/H amplifier which drives the first pipelined ADC stage. The firststage acquires the output of the S/H amplifier during the low phase of CLK. When CLK goes back high, the first stage produces its residue which is acquired by the second stage. At the same time, the input $S /$ H goes back to acquiring the analog input. When CLK goes low, the second stage produces its residue which is acquired by the third stage. An identical process is repeated for the third and fourth stages, resulting in a fourth stage residue that is sent to the fifth stage for final evaluation.

Each ADC stage following the first has additional range to accommodate flash and amplifier offset errors. Results from all of the ADC stages are digitally delayed such that the results can be properly combined in the correction logic before being sent to the output buffer.

## SAMPLE/HOLD OPERATION AND INPUT DRIVE

## Sample/Hold Operation

Figure 2 shows an equivalent circuitfor the LTC2201 CMOS differential sample and hold. The differential analog inputs are sampled directly onto sampling capacitors ( $\mathrm{C}_{\text {SAMPLE }}$ ) through NMOS transitors. The capacitors shown attached to each input (CPARASITIC) are the summation of all other capacitance associated with each input.


Figure 2. Equivalent Input Circuit

During the sample phase when CLK is high, the NMOS transistors connect the analog inputs to the sampling capacitors and they charge to, and track the differential input voltage. When CLK transitions from high to low, the sampled input voltage is held on the sampling capacitors. During the hold phase when CLK is high, the sampling capacitors are disconnected from the input and the held voltage is passed to the ADC core for processing. As CLK transitions from low to high, the inputs are reconnected to the sampling capacitors to acquire a new sample. Since the sampling capacitors still hold the previous sample, a charging glitch proportional to the change in voltage between samples will be seen at this time at the input of the converter. If the change between the last sample and

## APPLICATIONS InFORMATION

the new sample is small, the charging glitch seen at the input will be small. If the input change is large, such as the change seen with input frequencies near Nyquist, then a larger charging glitch will be seen.

## Common Mode Bias

The ADC sample-and-hold circuit requires differential drive to achieve specified performance. Each input may swing $\pm 0.625 \mathrm{~V}$ for the 2.5 V range ( $\mathrm{PGA}=0$ ) or $\pm 0.417 \mathrm{~V}$ for the 1.667 V range ( $\mathrm{PGA}=1$ ), around a common mode voltage of 1.25 V . The $\mathrm{V}_{\text {CM }}$ output pin (Pin 2) is designed to provide the common mode bias level. $\mathrm{V}_{\mathrm{CM}}$ can be tied directly to the center tap of a transformer to set the DC input level or as a reference level to an op amp differential driver circuit. The $\bigvee_{C M}$ pin must be bypassed to ground close to the ADC with $2.2 \mu \mathrm{~F}$ or greater.

## Input Drive Impedence

As with all high performance, high speed ADCs the dynamic performance of the LTC2201 can be influenced by the input drive circuitry, particularly the second and third harmonics. Source impedance and input reactance can influence SFDR. At the rising edge of CLK the sample and hold circuit will connect the 9.1 pF sampling capacitor to the input pin and start the sampling period. The sampling period ends when CLK falls, holding the sampled input on the sampling capacitor. Ideally, the input circuitry should be fast enough to fully charge the sampling capacitor during the sampling period $1 /\left(2 F_{\text {clk }}\right)$; however, this is not always possible and the incomplete settling may degrade the SFDR. The sampling glitch has been designed to be as linear as possible to minimize the effects of incomplete settling.
For the best performance it is recommended to have a source impedance of $100 \Omega$ or less for each input. The source impedance should be matched for the differential inputs. Poor matching will result in higher even order harmonics, especially the second.

## INPUT DRIVE CIRCUITS

Figure 3 shows the LTC2201 being driven by an RF transformer with a center-tapped secondary. The secondary center tap is $D C$ biased with $V_{C M}$, setting the ADC input signal at its optimum DC level. Figure 3 shows a $1: 1$ turns
ratio transformer. Other turns ratios can be used; however, as the turns ratio increases so does the impedance seen by the ADC. Source impedance greater than $50 \Omega$ can reduce the input bandwidth and increase high frequency distortion. A disadvantage of using a transformer is the loss of low frequency response. Most small RFtransformers have poor performance at frequencies below 1 MHz .


Figure 3. Single-Ended to Differential Conversion Using a Transiormer. Recommended for Input Frequencies from 1 MHz to 100 MHz

Center-tapped transformers provide a convenient means of DC biasing the secondary; however, they often show poor balance at high input frequencies, resulting in large 2nd order harmonics.

Figure 4 shows transformer coupling using a transmission line balun transformer. This type of transformer has much better high frequency response and balance thanflux coupled center tap transformers. Coupling capacitors are added at the ground and input primary terminals to allow the secondary terminals to be biased at 1.25 V .


Figure 4. Using a Transmission Line Balun Transformer.
Recommended for Input Frequencies from 50MHz to 250MHz

## APPLICATIONS INFORMATION

Figure 5 demonstrates the use of an LTC1994 differential amplifier to convert a single ended input signal into a differential input signal. The advantage of this method is that it provides low frequency input response; however, the limited gain bandwidth of any op amp will limit the SFDR at high input frequencies.


Figure 5. DC Coupled Input with Differential Amplifier

The $25 \Omega$ resistors and 12 pF capacitor on the analog inputs serve two purposes: isolating the drive circuitry from the sample-and-hold charging glitches and limiting the wideband noise at the converter input.

## Reference Operation

Figure 6 shows the LTC2201 reference circuitry consisting of a 2.5 V bandgap reference, a programmable gain amplifier and control circuit. The LTC2201 has three modes of reference operation: Internal Reference, 1.25V external reference or 2.5 V external reference. To use the internal reference, tie the SENSE pin to $V_{D D}$. To use the external reference, simply apply either a 1.25 V or 2.5 V reference voltage to the SENSE inputpin. Both 1.25 V and 2.5 V applied to SENSE will result in a full scale range of 2.5 V p-p $(\mathrm{PGA}=$ 0). A 1.25 V output, $\mathrm{V}_{\mathrm{CM}}$, is provided for a common mode bias for input drive circuitry. An external bypass capacitor is required for the $\mathrm{V}_{\text {CM }}$ output. This provides ahigh frequency low impedance path to ground for internal and external circuitry. This is also the compensation capacitor for the reference; it will not be stable without this capacitor. The minimum value required for stability is $2.2 \mu \mathrm{~F}$.

The internal programmable gain amplifier provides the internal reference voltage for the ADC. This amplifier has very stringent settling requirements and is not accessible for external use.


Figure 6. Reference Circuit

The SENSE pin can be driven $\pm 5 \%$ around the nominal 2.5 V or 1.25 V external reference input. This adjustment range can be used to trim the ADC gain error or other system gain errors. When selecting the internal reference, the SENSE pin should be tied to $\mathrm{V}_{\mathrm{DD}}$ as close to the converter as possible. If the sense pin is driven externally it should be bypassed to ground as close to the device as possible with at least a $1 \mu \mathrm{~F}$ ceramic capacitor.


Figure 7. A 2.5V Range ADC
with an External $2.5 V$ Reference

## APPLICATIONS INFORMATION

PGA Pin
The PGA pin selects between two gain settings for the ADC front-end. PGA $=0$ selects an input range of $2.5 \mathrm{~V}_{\text {P-p }} ; \mathrm{PGA}=$ 1 selects an input range of $1.667 \mathrm{~V}_{\text {P-p. }}$. The 2.5 V input range has the best SNR; however, the distortion will be higher for inputfrequencies above 100MHz. For applications with high input frequencies, the low input range will have improved distortion; however, the SNR will be 2.4 dB worse. See the Typical Performance Characteristics section.

## Driving the Clock Input

The CLK input can be driven directly with a CMOS or TTL level signal. A sinusoidal clock can also be used along with a low-jitter squaring circuit before the CLK pin (Figure 8).


Figure 8. Sinusoidal Single-Ended CLK Drive

The noise performance of the LTC2201 can depend on the clock signal quality as much as on the analog input. Any noise present on the clock signal will result in additional aperture jitter that will be RMS summed with the inherent ADC aperture jitter.

In applications where jitter is critical, such as when digitizing high input frequencies, use as large an amplitude as possible. It is also helpful to drive the CLK pin with a low-jitter high frequency source which has been divided down to the appropriate sample rate. If the ADC is clocked with a sinusoidal signal, filter the CLK signal to reduce wideband noise and distortion products generated by the source.

## Maximum and Minimum Conversion Rates

The maximum conversion rate for the LTC2201 is 20Msps. For the ADC to operate properly the CLK signal should have a $50 \%$ ( $\pm 10 \%$ ) duty cycle. Each half cycle must have at least 20ns for the LTC2201 internal circuitry to have enough settling time for proper operation.
An on-chip clock duty cycle stabilizer may be activated if the input clock does not have a $50 \%$ duty cycle. This circuit uses the falling edge of CLK pin to sample the analog input. The rising edge of CLK is ignored and an internal rising edge is generated by a phase-locked loop. The input clock duty cycle can vary from $30 \%$ to $70 \%$ and the clock duty cycle stabilizer will maintain a constant $50 \%$ internal duty cycle. If the clock is turned off for a long period of time, the duty cycle stabilizer circuit will require one hundred clock cycles for the PLL to lock onto the input clock. To use the clock duty cycle stabilizer, the MODE pin must be connected to $1 / 3 V_{D D}$ or $2 / 3 V_{D D}$ using external resistors.

The lower limit of the LTC2201 sample rate is determined by droop of the sample and hold circuits. The pipelined architecture of this ADC relies on storing analog signals on small valued capacitors. Junction leakage will discharge the capacitors. The specified minimum operating frequency for the LTC2201 is 1Msps.

## APPLICATIONS INFORMATION

## DIGITAL OUTPUTS

Digital Output Buffers

Figure 9 shows an equivalent circuit for a single output buffer in CMOS Mode. Each buffer is powered by $\mathrm{OV}_{\mathrm{DD}}$ and OGND, isolated from the ADC power and ground. The additional N-channel transistor in the output driver allows operation down to low voltages. The internal resistor in series with the output makes the output appear as $50 \Omega$ to external circuitry and eliminates the need for external damping resistors.

As with all high speed/high resolution converters, the digital output loading can affect the performance. The digital outputs of the LTC2201 should drive a small capacitive load to avoid possible interaction between the digital outputs and sensitive input circuitry. The output should be buffered with a device such as a ALVCH16373 CMOS latch. For full speed operation the capacitive load should be kept under 10 pF . A resistor in series with the output may be used but is not required since the ADC has a series resistor of $43 \Omega$ on chip.

Lower $\mathrm{OV}_{\mathrm{DD}}$ voltages will also help reduce interference from the digital outputs.


Figure 9. Equivalent Circuit for a Digital Output Buffer

## Data Format

The LTC2201 parallel digital output can be selected for offset binary or 2's complement format. The format is selected with the MODE pin. This pin has a four level logic input, centered at $0,1 / 3 \mathrm{~V}_{D D}, 2 / 3 \mathrm{~V}_{D D}$ and $\mathrm{V}_{\mathrm{DD}}$. An external resistor divider can be user to set the $1 / 3 \mathrm{~V}_{D D}$ and $2 / 3 \mathrm{~V}_{D D}$ logic levels. Table 1 shows the logic states for the MODE pin.

Table 1. MODE Pin Function

| MODE | OUTPUT FORMAT | CLOCK DUTY <br> CYCLE STABILIZER |
| :---: | :---: | :---: |
| $0(G N D)$ | Offset Binary | Off |
| $1 / 3 V_{D D}$ | Offset Binary | On |
| $2 / 3 V_{D D}$ | 2's Complement | On |
| $V_{D D}$ | 2's Complement | Off |

## Overflow Bit

An overflow output bit (OF) indicates when the converter is over-ranged or under-ranged. A logic high on the OF pin indicates an overflow or underflow.

## Output Clock

The ADC has a delayed version of the CLK input available as a digital output. Both a noninverted version, CLKOUT ${ }^{+}$ and an inverted version CLKOUT- are provided. The CLKOUT ${ }^{+} /$CLKOUT $^{-}$can be used to synchronize the converter data to the digital system. This is necessary when using a sinusoidal clock. Data can be latched on the rising edge ofCLKOUT+ ${ }^{+}$the falling edge of CLKOUT $^{-}$.CLKOUT ${ }^{+}$ falls and CLKOUT- rises as the data outputs are updated.

## APPLICATIONS INFORMATION

## Digital Output Randomizer

Interference from the ADC digital outputs is sometimes unavoidable. Interference from the digital outputs may be from capacitive or inductive coupling or coupling through the ground plane. Even a tiny coupling factor can result in discernible unwanted tones in the ADC output spectrum. By randomizing the digital output before it is transmitted off chip, these unwanted tones can be randomized, trading a slight increase in the noise floor for a large reduction in unwanted tone amplitude.

The digital output is "Randomized" by applying an exclu-sive-OR logic operation between the LSB and all other data output bits. To decode, the reverse operation is applied; that is, an exclusive-OR operation is applied between the LSB and all other bits. The LSB, OF and CLKOUT output are not affected. The output Randomizer function is active when the RAND pin is high.


Figure 10. Functional Equivalent of Digital Output Randomizer

## Output Driver Power

Separate output power and ground pins allow the output drivers to be isolated from the analog circuitry. The power supply for the digital output buffers, $\mathrm{OV}_{\mathrm{DD}}$, should be tied to the same power supply as for the logic being driven. For example, if the converter is driving a DSP powered by a 1.8 V supply, then $\mathrm{OV}_{\mathrm{DD}}$ should be tied to that same 1.8 V supply. In CMOS mode OV ${ }_{\text {DD }}$ can be powered with any logic voltage up to 3.6 V . OGND can be powered with any voltage from ground up to 1 V and must be less than OV DD The logic outputs will swing between OGND and OV


Figure 11. Descrambling a Scrambled Digital Output

## APPLICATIONS INFORMATION

## Internal Dither

The LTC2201 is a 16-bit ADC with a very linear transfer function; however, at low input levels even slight imperfections in the transfer function will result in unwanted tones. Small errors in the transfer function are usually a result of ADC element mismatches. An optional internal dither mode can be enabled to randomize the input's location on the ADC transfer curve, resulting in improved SFDR for low signal levels.

As shown in Figure 12, the output of the sample-and-hold amplifier is summed with the output of a dither DAC. The dither DAC is driven by a long sequence pseudo-random number generator; the random number fed to the dither DAC is also subtracted from the ADC result. If the dither DAC is precisely calibrated to the ADC, very little of the dither signal will be seen at the output. The dither signal that does leak through will appear as white noise. The dither DAC is calibrated to result in less than 0.5 dB elevation in the noise floor of the ADC, as compared to the noise floor with dither off.


Figure 12. Functional Equivalent Block Diagram of Internal Dither Circuit

## Grounding and Bypassing

The LTC2201 require a printed circuit board with a clean unbroken ground plane; a multilayer board with an internal ground plane is recommended. The pinout of the LTC2201 has been optimized for a flowthrough layout so that the interaction between inputs and digital outputs is minimized. Layout for the printed circuit board should ensure that digital and analog signal lines are separated as much as possible. In particular, care should be taken not to run any digital track alongside an analog signal track or underneath the ADC.

High quality ceramic bypass capacitors should be used at the $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CM}}$, and $\mathrm{O} \mathrm{V}_{\mathrm{DD}}$ pins. Bypass capacitors must be located as close to the pins as possible. The traces connecting the pins and bypass capacitors must be kept short and should be made as wide as possible.

The LTC2201 differential inputs should run parallel and close to each other. The input traces should be as short as possible to minimize capacitance and to minimize noise pickup.

## Heat Transfer

Most of the heat generated by the LTC2201 is transferred from the die through the bottom-side exposed pad. For good electrical and thermal performance, the exposed pad must be soldered to a large grounded pad on the PC board. It is critical that the exposed pad and all ground pins are connected to a ground plane of sufficient area with as many vias as possible.

## APPLICATIONS InFORMATION



## APPLICATIONS INFORMATION

Silkscreen Top


Silkscreen Topside


Inner Layer 2


Inner Layer 3


## APPLICATIONS INFORMATION

Silkscreen Bottom Side


Silkscreen Bottom


## PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.
UK Package
48-Lead Plastic QFN ( $7 \mathrm{~mm} \times 7 \mathrm{~mm}$ )
(Reference LTC DWG \# 05-08-1704 Rev C)


RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED


NOTE:

1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WKKD-2)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20 mm ON ANY SIDE, IF PRESENT
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

## RELATED PARTS

| PART NUMBER | DESCRIPTION | COMMENTS |
| :---: | :---: | :---: |
| LTC2202 | 16-Bit, 10Msps, 3.3V ADC | 140mW, 81.6dB SNR, 100dB SFDR, 48-Pin QFN |
| LTC2203 | 16-Bit, 25Msps, 3.3V ADC | $220 \mathrm{~mW}, 81.6 \mathrm{~dB}$ SNR, 100dB SFDR, 48-Pin QFN |
| LTC6404-1 | 600MHz Low Noise, Low Distortion, Differential ADC Driver | $1.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Noise, -90 dBc Distortion at 10MHz |
| LT1994 | Low Noise, Low Distortion Fully Differential Input/Output Amplifier/Driver | Low Distortion: -94 dBc at 1 MHz |
| LTC2204 | 16-Bit, 40Msps, 3.3V ADC | 480mW, 79.1dB SNR, 100dB SFDR, 48-Pin QFN |
| LTC2205 | 16-Bit, 65Msps, 3.3V ADC | $610 \mathrm{~mW}, 79 \mathrm{~dB}$ SNR, 100dB SFDR, 48-Pin QFN |
| LTC2206 | 16-Bit, 80Msps, 3.3V ADC | $725 \mathrm{~mW}, 77.9 \mathrm{~dB}$ SNR, 100dB SFDR, 48-Pin QFN |
| LTC2207 | 16-Bit, 105Msps, 3.3V ADC | $900 \mathrm{~mW}, 77.9 \mathrm{~dB}$ SNR, 100dB SFDR, 48-Pin QFN |
| LTC2208 | 16-Bit, 130Msps, 3,3V ADC, LVDS Outputs | $1250 \mathrm{~mW}, 77.1 \mathrm{~dB}$ SNR, 100dB SFDR, 64-Pin QFN |
| LTC2224 | 12-Bit, 135Msps, 3.3V ADC, High IF Sampling | 630mW, 67.6dB SNR, 84dB SFDR, 48-Pin QFN |
| LTC2242-12 | 12-Bit, 250Msps, 2.5V ADC, LVDS Outputs | $740 \mathrm{~mW}, 65.4 \mathrm{~dB}$ SNR, 84dB SFDR, 64-Pin QFN |
| LTC2255 | 14-Bit, 125Msps, 3V ADC, Lowest Power | $395 \mathrm{~mW}, 72.5 \mathrm{~dB}$ SNR, 88dB SFDR, 32-Pin QFN |
| LTC2284 | 14-Bit, Dual, 105Msps, 3V ADC, Low Crosstalk | $540 \mathrm{~mW}, 72.4 \mathrm{~dB}$ SNR, 88dB SFDR, 64-pin QFN |
| LT5512 | DC-3GHz High Signal Level Downconverting Mixer | DC to 3GHz, 21dBm IIP3, Integrated LO Buffer |
| LT5514 | Ultralow Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain | 450MHz to 1dB BW, 47dB OIP3, Digital Gain Control 10.5dB to 33dB in 1.5dB/Step |
| LT5515 | 1.5 GHz to 2.5 GHz Direct Conversion Quadrature Demodulator | High IIP3: 20 dBm at 1.9 GHz , Integrated LO Quadrature Generator |
| LT5516 | 800MHz to 1.5 GHz Direct Conversion Quadrature Demodulator | High IIP3: 21.5 dBm at 900MHz, Integrated LO Quadrature Generator |
| LT5517 | 40MHz to 900MHz Direct Conversion Quadrature Demodulator | High IIP3: 21dBm at 800MHz, Integrated LO Quadrature Generator |
| LT5522 | 600 MHz to 2.7 GHz High Linearity Downconverting Mixer | 4.5V to 5.25 V Supply, 25 dBm IIP3 at 900 MHz . NF $=12.5 \mathrm{~dB}, 50 \Omega$ Single Ended RF and LO Ports |

