FLS PB M12 DIO 4/4 M12-2A

Fieldline Stand-Alone device for PROFIBUS DP with four digital inputs and four digital outputs

AUTOMATION

Data sheet

6631_en_03

1 Description

This device is used to acquire and output digital signals.

Features

- Connection to PROFIBUS DP using M12 connectors (B-encoded)
- Baud rate with up to 12 Mbaud autobaud
- Connection of digital sensors using M12 connectors
- Connection of digital actuators using M12 connectors, each with a load capacity of 2 A (nominal current)
- Flexible power supply concept
- Diagnostic and status indicators
- Short-circuit and overload protection of the outputs and sensor supply
- IP 65/IP 67 protection

Make sure you always use the latest documentation.
It can be downloaded at www. phoenixcontact.com.
This data sheet is only valid in association with the FLS FLM SYS INST UM E and FLS FLM PB SYS PRO UM E user manuals.
\square
\square

2 Ordering data

Products

Description	Type	Order No.	Pcs./Pkt.
Fieldline Stand-Alone device for PROFIBUS with four digital inputs and four digital outputs	FLS PB M12 DIO 4/4 M12-2A	2736107	1
Accessories			
Description	Type	Order No.	Pcs./Pkt.
Protective caps (for unused female connectors)	PROT-M12	1680539	5
Protective caps (for unused male connectors)	PROT-M12-FS	1513596	5
5-pos. shielded female connector, M12 B-encoded, for the incoming remote bus	SACC-M12FSB-5CON-PG9 SH AU	1507777	1
5-pos. shielded male connector, M12 B-encoded, for the outgoing remote bus	SACC-M12MSB-5CON-PG9 SH AU	1507764	1
PROFIBUS M12 T-piece, 12 Mbaud	SAC-M12T/2XM12 PB DP	1507780	1
PROFIBUS M12 termination resistor	SAC-5P-M12MS PB TR	1507803	1
Marking labels	ZBF 12:UNBEDRUCKT	0809735	10

For additional accessories for connecting the sensors and actuators, please refer to the Phoenix Contact PLUSCON catalog

Documentation

Description	Type	Order No.	Pcs./Pkt.
"Installation of devices in the Fieldline product range" user manual	FLS FLM SYS INST UM E	-	-
"Configuring a PROFIBUS system using devices in the Fieldline product range" user manual	FLS FLM PB SYS PRO UM E	-	-

3 Technical data

Figure 1 Dimensions of the device

General data

Order designation	FLS PB M12 DIO $4 / 4 \mathrm{M} 12-2 \mathrm{~A}$
Order No.	2736107
Housing dimensions (width x height x depth)	$60 \mathrm{~mm} \times 178 \mathrm{~mm} \times 49.3 \mathrm{~mm}$
Weight	340 g, approximately
Operating mode	Process data mode with 8 bits
Connection method for sensors	2,3 or 4 -wire technology
Connection method for actuators	2 or 3-wire technology
Permissible temperature (operation)	$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Permissible temperature (storage/transport)	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Permissible humidity (storage/transport)	95%

For a short period, slight condensation may appear on the outside of the housing.

Permissible air pressure (operation)	80 kPa to 106 kPa (up to 2000 m above sea level)
Permissible air pressure (storage/transport)	70 kPa to 106 kPa (up to 3000 m above sea level)
Degree of protection	IP65/IP67 according to IEC 60529
Protection class	Class 3 according to VDE 0106, IEC 60536
Mechanical requirements	
Vibration test, sinusoidal vibrations according to EN 60068-2-6	5 g load in each space direction
Shock test according to EN 60068-2-27	30 g load, half sinusoidal wave positive and negative in each space direction

For additional information about mechanical requirements and ambient conditions, please contact Phoenix Contact.

Power supply	
Supply voltage	24 V DC
Range	18 V DC to 30 V DC
Current consumption at $\mathrm{U}_{\mathrm{L}}+$ at 24 V DC	40 mA , typical (100 mA , maximum)
Current consumption at U_{S} at 24 V DC	4.5 mA + sensor current, typical (700 mA , maximum)
Current consumption at $\mathrm{U}_{\mathrm{Axx}}$ at 24 V DC	$6 \mathrm{~mA}+$ actuator current, typical (4 A, maximum)
Digital inputs	
Number	4
Input design	According to IEC 61131-2 Type 1
Definition of switching thresholds	
Maximum low-level voltage	$\mathrm{U}_{\text {Lmax }}<5 \mathrm{~V}$
Minimum high-level voltage	$\mathrm{U}_{\text {Hmin }}>11 \mathrm{~V}$
Nominal input voltage	24 V DC
Range	-30 V DC $<\mathrm{U}_{\text {IN }}<+30 \mathrm{~V}$ DC
Nominal input current	5 mA
Current flow	Linear in the range $1 \mathrm{~V}<\mathrm{U}_{\text {IN }}<30 \mathrm{~V}$
Delay time	$\mathrm{t}_{\mathrm{ON}}<3.1 \mathrm{~ms}$, typical $t_{\text {OFF }}=4.1 \mathrm{~ms}$, typical
Permissible cable length to the sensor	100 m

Input characteristic curve

Input voltage (V)
 Typical input current (mA)

$30<\mathrm{U}_{\mathrm{IN}}<0.7$
3
6
9
12
15
18
21
24
27

Sensor supply

Minimum sensor voltage	$\mathrm{U}_{\mathrm{S}}-1 \mathrm{~V}$
Nominal current per channel	75 mA
Nominal current per device	300 mA
Overload protection	Electronic per device
Short-circuit protection	Electronic per device

Error messages to the higher-level control or computer system

Sensor supply short circuit
Sensor supply overload
If an error is triggered by an overload or short circuit of the sensor supply, the device switches off the sensor supply to all the channels and sends an error message to the master. If the sensor supply U_{S} is too low, the device sends an error message to the master (see "Diagnostic data" on page 14).

Digital outputs

Digital outputs (continued)

Nominal load per channel

- Ohmic
- Inductive
- Inductive
- Lamp

Signal delay upon power up of:

- Nominal ohmic load
- Nominal inductive load
- Nominal lamp load

Signal delay upon power down of:

- Nominal ohmic load
- Nominal inductive load
- Nominal lamp load

Switching frequency with:

- Nominal ohmic load

48 W
$48 \mathrm{VA}(1.2 \mathrm{H}, 12 \Omega)$
48 W

Approximately $200 \mu \mathrm{~s}$, typical
Depending on inductive time constant
Approximately $200 \mu \mathrm{~s}$, typical

Approximately $250 \mu \mathrm{~s}$, typical
$150 \mathrm{~ms}(1.2 \mathrm{H}, 12 \Omega)$, approximately; depending on inductive time constant $250 \mu \mathrm{~s}$, approximately

500 Hz , maximum

This switching frequency is limited by the number of bus devices, the bus configuration, the software used, and the control or computer system used.

- Nominal inductive load	$0.1 \mathrm{~Hz}(1.2 \mathrm{H}, 12 \Omega)$, maximum
- Nominal lamp load	500 Hz
Overload response	Auto restart
Restart frequency with ohmic overload (2 $\Omega)$	45 Hz, approximately
Response with inductive overload	Output may be damaged
Reverse voltage protection against short pulses	Protected against reverse voltages
Resistance to permanently applied reverse voltages	No
Response upon power down	The output follows the supply voltage without delay
Validity of output data after connecting the power supply (power up)	5 ms, typical
Limitation of the voltage induced on circuit interruption	-11 V, approximately
Single maximum energy in free running	1500 W
Protective circuit type	Integrated free-wheeling diode for each channel
Overcurrent shutdown	2.6 A, minimum
Output current when switched off	$20 \mu \mathrm{~A}$, maximum
Output current with ground connection interrupt when switched off	5 mA, maximum

Error messages to the higher-level control or computer system

Overload of outputs
Yes

If an error is triggered at the outputs by an overload, the device switches off the corresponding output and sends an error message to the master (see "Diagnostic data for device diagnostics" on page 14).

Electrical isolation/isolation of the voltage areas

For device connection, please note the instructions and regulations in the "Installation of devices in the Fieldline product range" user manual, FLS FLM SYS INST UM E.

Separate potentials in the FLS PB M12 DIO 4/4 M12-2A I/O device

Test distance

24 V supply (bus logic)/bus connection
24 V supply (bus logic)/FE
24 V supply (bus logic)/digital inputs (sensor supply)
24 V supply (bus logic)/digital outputs (actuator supply)
Bus connection/FE
Bus connection/digital inputs (sensor supply)
Bus connection/digital outputs (actuator supply)
FE/digital inputs (sensor supply)
FE/digital outputs (actuator supply)
Digital outputs (actuator supply)/digital outputs (actuator supply)

Test voltage
500 V AC, $50 \mathrm{~Hz}, 1 \mathrm{~min}$.
500 V AC, $50 \mathrm{~Hz}, 1 \mathrm{~min}$.
$500 \mathrm{~V} \mathrm{AC}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$.
500 V AC, $50 \mathrm{~Hz}, 1 \mathrm{~min}$.
$500 \mathrm{~V} \mathrm{AC}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$.
$500 \mathrm{~V} \mathrm{AC}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$.
$500 \mathrm{~V} \mathrm{AC}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$.
500 V AC, $50 \mathrm{~Hz}, 1 \mathrm{~min}$.
$500 \mathrm{~V} \mathrm{AC}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$.
$500 \mathrm{~V} \mathrm{AC}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$.

Approvals

For the latest approvals, please visit www.download.phoenixcontact.com or eshop.phoenixcontact.com.

4 Pin assignment

Designation	Meaning
FE	Functional earth ground
BUS IN	PROFIBUS IN
BUS OUT	PROFIBUS OUT
$\mathrm{U}_{\text {LS }}$ IN	Power supply IN (logic and sensors)
ULS OUT	Power supply OUT (logic and sensors) for additional devices
IN1 to IN4	Inputs 1 to 4
OUT1 to OUT4	Outputs 1 to 4
$\mathrm{U}_{\mathrm{A}} \mathrm{IN}$	Power supply IN of the outputs (OUT1 to OUT4) with voltages $\mathrm{U}_{\mathrm{A} 11}$ and $\mathrm{U}_{\mathrm{A} 12}$
U_{A} OUT	Power supply OUT for additional devices

Figure 2 Connections of the FLS PB M12 DIO 4/4 M12-2A

4.1 Pin assignment of the PROFIBUS connection

Figure 3 PROFIBUS pin assignment (M12 B-encoded)

Pin	IN	OUT
1	VP	VP
2	RxD/TxD-N (A)	RxD/TxD-N (A)
3	DGND	DGND
4	RxD/TxD-P (B)	RxD/TxD-P (B)
5	Shield	Shield

\pm The thread is used for additional shielding.

4.2 Pin assignment of the power supply $U_{\text {Ls }}$

(3)

IN
OUT

(4) $6625 A 005$

Pin	IN	OUT
1	$\mathrm{U}_{\mathrm{L}}+24 \mathrm{~V}$	$\mathrm{U}_{\mathrm{L}}+24 \mathrm{~V}$
2	U_{S} GND	U_{S} GND
3	U_{L} GND	U_{L} GND
4	$\mathrm{U}_{\mathrm{S}}+24 \mathrm{~V}$	$\mathrm{U}_{\mathrm{S}}+24 \mathrm{~V}$

Figure $4 \quad$ Pin assignment of the power supply $U_{L S}$

4.3 Pin assignment of the power supply U_{A} of the outputs

(4) $6625 A 005$

Pin	IN	OUT
1	$\mathrm{U}_{\mathrm{A} 11}+24 \mathrm{~V}$	$\mathrm{U}_{\mathrm{A} 11}+24 \mathrm{~V}$
2	$\mathrm{U}_{\mathrm{A} 12} \mathrm{GND}$	$\mathrm{U}_{\mathrm{A} 12} \mathrm{GND}$
3	$\mathrm{U}_{\mathrm{A} 11} \mathrm{GND}$	$\mathrm{U}_{\mathrm{A} 11} \mathrm{GND}$
4	$\mathrm{U}_{\mathrm{A} 12}+24 \mathrm{~V}$	$\mathrm{U}_{\mathrm{A} 12}+24 \mathrm{~V}$

Figure 5 Pin assignment of the power supply U_{A} of the outputs

4.4 Pin assignment of the inputs and outputs

(5)

> 6625A006

Figure 6 Pin assignment of the inputs and outputs

4.5 Assignment of the female input connectors

Female connector $1<>$ Female connector 2 Female connector $3 \longleftrightarrow$ Female connector 4

Figure 7 Assignment of the female input connectors

5 Local diagnostic and status indicators

Figure 8 Indicators and rotary encoding switches of the FLS PB M12 DIO 4/4 M12-2A

Rotary encoding switches

The station address is set using rotary encoding switches X10 (for tens) and X1 (for units). The PROFIBUS master addresses the device by means of this station address.

The valid value range is between 1 and 99 .
A new address value is only applied on device power up.

Designation	Color	Meaning
BF	Red LED	Bus error (bus failure)
	ON:	No cyclic data transmission: - PROFIBUS not connected, master not active - Incorrect settings (configuration via master, station address) - Synchronization or parameterization running - Timeout elapsed
	OFF:	- Device is addressed by PROFIBUS and is in the "cyclic process data exchange" state - Device supply not present (In this state the "UL" LED is also off due to the missing 24 V communications power.)
UL	Green LED	Communications power
	ON:	Communications power present
	OFF:	Communications power too low
US	Red/green LED	Power supply for IN1 to IN4
	ON (red):	Power supply overloaded
	ON (green):	Power supply present
	OFF:	Power supply too low
XX	Yellow LED	Status indicators for the inputs
	ON:	Input active
	OFF:	Input not active
YY	Yellow LED	Status indicators for the outputs
	ON:	Output active
	OFF:	Output not active
ZZ	Red LED	Overload of outputs
	ON:	Output overloaded
	OFF:	Output not overloaded
UA11	Green LED	Power supply for OUT1 and OUT2
	ON:	Power supply for OUT1 and OUT2 present
	OFF:	Power supply for OUT1 and OUT2 too low
UA12	Green LED	Power supply for OUT3 and OUT4
	ON:	Power supply for OUT3 and OUT4 present
	OFF:	Power supply for OUT3 and OUT4 too low

6 Internal basic circuit diagram

Key:
Functional earth ground
Isolating transformer
OROFIBUS protocol chip (bus logic
including voltage conditioning)

Figure 9 Internal wiring of the connections
$\pm \quad \begin{aligned} & \text { For information about the electrically isolated } \\ & \text { areas, please refer to page } 7 .\end{aligned}$

7 Connection example

6625B009
Figure 10 Typical connection of sensors and actuators

8 Connection notes

(1)

NOTE: Meet noise immunity requirements
Connect FE using a mounting screw or a cable connection to the FE connection latch (when mounting on the side or on a non-conductive surface).

NOTE: Ensure degree of protection
To ensure IP65/IP67 protection, cover unused female connectors with protective caps.

NOTE: Avoid damage to the electronics
Only supply the sensors with the voltage U_{S} provided at the terminal points.

NOTE: Avoid polarity reversal
Avoid polarity reversal of the supply voltages U_{L}, U_{S}, and U_{A} in order to prevent damage to the device.

NOTE: Observe connection assignment
When connecting the sensors and actuators, observe the assignment of the connections to the PROFIBUS input and output data (see "Process data" on page 14).

9 Configuration data

ID number	$066 A_{\text {hex }}$
Input address area	8 bits
Output address area	8 bits

10 Process data

10.1 Assignment of the terminal points to the IN process data

(Byte.bit) view	Byte	Byte 0								
	Bit	7	6	5	4	3	2	1	0	
Device	Input	0	0	0	0	4	3	1		

i
For bits 0.4 to 0.7 of the inputs the value is " 0 ".
10.2 Assignment of the terminal points to the OUT process data

(Byte.bit) view	Byte	Byte 0							
	Bit	7	6	5	4	3	2	1	0
Device	Output	X	X	X	X	4	3	2	1

The assignment of bits 0.4 to 0.7 of the outputs has no effect on the output state.

11 Diagnostic data

11.1 Mapping of diagnostic data in PROFIBUS

Diagnostic data	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Remark
Byte 0	X	X	X	X	X	X	X	X	Station status 1
Byte 1	X	X	X	X	X	X	X	X	Station status 2
Byte 2	X	X	X	X	X	X	X	X	Station status 3
Byte 3	X	X	X	X	X	X	X	X	Diagnostic master address
Byte 4	0	0	0	0	0	1	1	0	High ID number
Byte 5	0	1	1	0	1	0	1	0	Low ID number
Byte 6	0	0	0	0	0	1	1	1	Diagnostic header
Byte 7	$\mathrm{M.7}$	M .6	$\mathrm{M.5}$	$\mathrm{M.4}$	$\mathrm{M.3}$	M .2	M .1	M .0	Device diagnostics
Byte 8	0	0	0	0	0	0	0	0	Reserved
Byte 9	0	0	0	0	0	0	0	0	Reserved
Byte 10	0	0	0	0	0	0	0	0	Reserved
Byte 11	0	0	0	0	0	0	0	0	Reserved
Byte 12	X	X	0	0	0	0	0	0	Reserved

Bytes 0 to 6 are PROFIBUS standard. Bytes 7 to 12 are device-specific.

11.2 Diagnostic data for device diagnostics

Bit	Remark	Assignment
M. 0 - M. 2	Reserved	0
M. 3	Status of the sensor supply U_{S}	1, if U_{S} is too low
M. 4	Reserved	0
M. 5	Overload status of the outputs	OUT1 to OUT4
M. 6	Status of the device supply U_{L}	1 , if U_{L} too low
M. 7	Overload status of the sensor supply U_{S}	1 , if sensor supply is overloaded
\pm If	If a diagnostic event occurs, the diagnostic data is sent to the master by means of a diagnostic telegram generated once by the device. The current status of the data can be read by the device at any time.	

